Estimating leaf and canopy nitrogen contents in major field crops across the growing season from hyperspectral images using nonparametric regression

高光谱成像 天蓬 非参数统计 生长季节 环境科学 领域(数学) 非参数回归 氮气 数学 回归 回归分析 农学 遥感 统计 地理 植物 生物 化学 有机化学 纯数学
作者
D. Wang
出处
期刊:Authorea - Authorea 被引量:2
标识
DOI:10.22541/au.170111047.73824045/v1
摘要

Estimating leaf nitrogen (N) status is crucial for site-and time-specific crop N management, and can be accomplished more routinely than ever before with the advent of hyperspectral imaging techniques.We conducted field experiments with different nitrogen supply for rice, wheat and maize, in China, in which three types of hyperspectral features were extracted, including canopy reflectance (Ref), vegetation indices (VIs), and texture information (Tex).These features as well as crop development stage (DS) were applied to estimate crop N parameters, using five nonparametric regression algorithms: Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), Random Forest Regression, Deep Neural Network, and Convolution Neural Network.The performance of PLSR and SVR models was more robust than that of the others and could be improved by incorporating the combined feature set RefVIsTex, although there was no further improvement when also incorporating DS.The prediction of the mass-based leaf N trait, leaf N concentration (LNC), was better than that of the area-based trait, specific leaf N (SLN).The models also predicted specific leaf area (SLA) better than its reciprocal, specific leaf weight.Values of SLN were better predicted via an indirect method (predicted via SLA; denoted as SLN sla ) than via the direct method (SLN dir ).However, when upscaled to canopy, the predicted canopy N content (N canopy ) using SLN dir agreed better with measuredN canopy than that using SLN sla , and even better than the direct predictionN canopy,dir in rice and maize.These results were discussed in view of coupling the predicted leaf and canopy N traits with dynamic crop growth models that can be used for optimizing field N management in sustainable agricultural production.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观小之应助快乐难敌采纳,获得10
刚刚
ceeray23应助快乐难敌采纳,获得10
刚刚
ceeray23应助快乐难敌采纳,获得10
刚刚
刚刚
1秒前
2秒前
传奇3应助秋颦采纳,获得10
2秒前
细心奇异果完成签到,获得积分10
2秒前
脑洞疼应助自信鞯采纳,获得10
2秒前
3秒前
4秒前
天天快乐应助董新怡采纳,获得10
4秒前
5秒前
5秒前
whitepiece发布了新的文献求助10
6秒前
徐赞美发布了新的文献求助10
6秒前
翻水水发布了新的文献求助10
6秒前
7秒前
Yuan发布了新的文献求助10
8秒前
8秒前
Trost发布了新的文献求助10
9秒前
陈思雨完成签到,获得积分10
9秒前
lingling发布了新的文献求助30
9秒前
10秒前
136542发布了新的文献求助10
10秒前
rainsy完成签到,获得积分10
10秒前
NexusExplorer应助11采纳,获得10
11秒前
77发布了新的文献求助10
11秒前
12秒前
12秒前
wangwei发布了新的文献求助10
12秒前
12秒前
隐形曼青应助圆又圆采纳,获得10
13秒前
14秒前
14秒前
慢慢人完成签到,获得积分10
14秒前
14秒前
14秒前
热心市民小红花应助Miner采纳,获得10
14秒前
樊书雪发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947426
求助须知:如何正确求助?哪些是违规求助? 3492604
关于积分的说明 11066032
捐赠科研通 3223507
什么是DOI,文献DOI怎么找? 1781540
邀请新用户注册赠送积分活动 866368
科研通“疑难数据库(出版商)”最低求助积分说明 800332