A signal recovery method for bridge monitoring system using TVFEMD and encoder-decoder aided LSTM

希尔伯特-黄变换 计算机科学 可解释性 桥(图论) 噪音(视频) 人工智能 干扰(通信) 信号(编程语言) 人工神经网络 失真(音乐) 模式(计算机接口) 编码器 序列(生物学) 数据挖掘 计算机视觉 滤波器(信号处理) 频道(广播) 带宽(计算) 操作系统 程序设计语言 放大器 内科学 图像(数学) 生物 医学 遗传学 计算机网络
作者
Jingzhou Xin,Chaoying Zhou,Yan Jiang,Qizhi Tang,Simon X. Yang,Jianting Zhou
出处
期刊:Measurement [Elsevier BV]
卷期号:214: 112797-112797 被引量:45
标识
DOI:10.1016/j.measurement.2023.112797
摘要

Accurate monitoring data in bridge health monitoring systems are critical for grasping the structural operation status. However, because of data missing and distortion induced by the sensor malfunction and the interference of system or measurement noise, it is hard to obtain reliable monitoring data. To settle this problem, this paper proposes a method for the recovery of bridge monitoring data based on the combination of the time varying filtering based empirical mode decomposition (TVFEMD), encoder-decoder (ED), and long short-term memory neural network (LSTM). This hybrid method can transform the problem of data recovery into a series of forecasting tasks. Specifically, TVFEMD is first used to decompose the original signal into several regular intrinsic mode functions (IMFs) with different frequency bands. Then, ED is employed to improve the interpretability and applicability of the original LSTM via constructing a sequence-to-sequence network architecture (i.e., ED-LSTM). Finally, ED-LSTM is established for each IMF to perform the desired prediction, and the final recovery result can be generated by summing each desired prediction in a linear manner. Case study based on the monitoring data in the bridge health monitoring system is used to illustrate the effectiveness of the proposed method. The results show that this method is superior to the other compared methods in terms of the data recovery ability. For example, the proposed method can realize an overall improvement of 33.90% in comparison with the original LSTM. Therefore, this method may have a potential for the recovery of bridge health monitoring data in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lyx发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
cindy完成签到,获得积分10
3秒前
3秒前
彭于晏应助Sun采纳,获得30
3秒前
3秒前
4秒前
研友_LNoy5n发布了新的文献求助10
4秒前
许甜甜鸭应助fagfagsf采纳,获得10
5秒前
SciGPT应助starry001采纳,获得30
5秒前
6秒前
丘比特应助典雅的静采纳,获得10
6秒前
白白完成签到,获得积分10
6秒前
不成文完成签到,获得积分10
7秒前
111发布了新的文献求助20
7秒前
iiiiii发布了新的文献求助10
7秒前
E神—十面埋伏完成签到,获得积分10
7秒前
Yy杨优秀发布了新的文献求助10
7秒前
dox发布了新的文献求助30
8秒前
阿蒙完成签到,获得积分10
8秒前
水兽发布了新的文献求助20
8秒前
Crazy_Runner发布了新的文献求助10
8秒前
9秒前
yangqi发布了新的文献求助10
9秒前
zhiying发布了新的文献求助10
9秒前
lyx完成签到,获得积分10
9秒前
实验室扛把子完成签到,获得积分10
9秒前
10秒前
研友_ZzReaZ完成签到,获得积分20
10秒前
典雅碧空发布了新的文献求助10
10秒前
Hello应助mumu采纳,获得50
10秒前
科研通AI5应助夏云峰采纳,获得10
10秒前
weifengli完成签到,获得积分10
10秒前
情怀应助高高采纳,获得10
12秒前
万能图书馆应助momo采纳,获得10
12秒前
Hello应助扶桑采纳,获得10
13秒前
研友_ZzReaZ发布了新的文献求助10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838196
求助须知:如何正确求助?哪些是违规求助? 3380471
关于积分的说明 10514526
捐赠科研通 3100044
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821625
科研通“疑难数据库(出版商)”最低求助积分说明 772816