Automated tumor immunophenotyping predicts clinical benefit from anti-PD-L1 immunotherapy

免疫疗法 医学 免疫分型 癌症免疫疗法 癌症 生物标志物 免疫系统 肺癌 肿瘤科 内科学 免疫学 抗原 生物 生物化学
作者
Xiao Li,Jeffrey Eastham,Jennifer M. Giltnane,W. Zou,Andries Zijlstra,Evgeniy Tabatsky,Romain Banchereau,Ching‐Wei Chang,Barzin Y. Nabet,Namrata S. Patil,Luciana Molinero,Steve Chui,Maureen Peterson,Shari Lau,Linda Rangell,Yannick Waumans,Mark Kockx,Darya Orlova,Hartmut Koeppen
标识
DOI:10.1101/2023.04.03.535467
摘要

Abstract Background Cancer immunotherapy has transformed the clinical approach to patients with malignancies as profound benefits can be seen in a subset of patients. To identify this subset, biomarker analyses increasingly focus on phenotypic and functional evaluation of the tumor microenvironment (TME) to determine if density, spatial distribution, and cellular composition of immune cell infiltrates can provide prognostic and/or predictive information. Attempts have been made to develop standardized methods to evaluate immune infiltrates in the routine assessment of certain tumor types; however, broad adoption of this approach in clinical decision-making is still missing. Methods We developed approaches to categorize solid tumors into “Desert”, “Excluded” and “Inflamed” types according to the spatial distribution of CD8+ immune effector cells to determine the prognostic and/or predictive implications of such labels. To overcome the limitations of this subjective approach we incrementally developed four automated analysis pipelines of increasing granularity and complexity for density and pattern assessment of immune effector cells. Results We show that categorization based on “manual” observation is predictive for clinical benefit from anti-programmed cell death ligand-1 (PD-L1) therapy in two large cohorts of patients with non-small cell lung cancer (NSCLC) or triple-negative breast cancer (TNBC). For the automated analysis we demonstrate that a combined approach outperforms individual pipelines and successfully relates spatial features to pathologist-based read-outs and patient response to therapy. Conclusions Our findings suggest tumor immunophenotype (IP) generated by automated analysis pipelines should be evaluated further as potential predictive biomarkers for cancer immunotherapy. What is already known on this topic Clinical benefit from checkpoint inhibitor-targeted therapies is realized only in a subset of patients. Robust biomarkers to identify patients who may respond to such therapies are needed. What this study adds We have developed manual and automated approaches to categorize tumors into immunophenotypes based on the spatial distribution of CD8+ T effector cells that predict clinical benefit from anti-PD-L1 immunotherapy for patients with advanced non-small cell lung cancer or triple-negative breast cancer. How this study might affect research, practice or policy Tumor immunophenotypes should be further validated as predictive biomarker for checkpoint inhibitor-targeted therapies in prospective clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘佳豪发布了新的文献求助10
刚刚
刚刚
酒酿圆子完成签到,获得积分10
刚刚
momo完成签到,获得积分10
3秒前
yujiujiang完成签到,获得积分20
4秒前
4秒前
狄语蕊发布了新的文献求助10
5秒前
阙女士完成签到,获得积分10
5秒前
5秒前
hu发布了新的文献求助10
5秒前
5秒前
dongfang完成签到,获得积分10
6秒前
于向沉发布了新的文献求助10
6秒前
复杂青亦完成签到,获得积分10
7秒前
7秒前
39完成签到 ,获得积分10
8秒前
karyoter完成签到,获得积分10
8秒前
xxfsx应助搞怪的牛爷爷采纳,获得10
8秒前
Xianao完成签到,获得积分20
8秒前
8秒前
吉田清子发布了新的文献求助10
8秒前
8秒前
彭于晏应助yujiujiang采纳,获得10
9秒前
niu完成签到,获得积分10
9秒前
洛楠发布了新的文献求助10
9秒前
11秒前
科研通AI6应助激昂的柚子采纳,获得30
11秒前
绮罗关注了科研通微信公众号
12秒前
思源应助ljq采纳,获得10
12秒前
踏实芷云完成签到,获得积分10
12秒前
lwl发布了新的文献求助10
13秒前
风趣小蜜蜂完成签到 ,获得积分10
13秒前
屎味烤地瓜完成签到,获得积分10
13秒前
木犀板板发布了新的文献求助10
13秒前
111111发布了新的文献求助10
14秒前
14秒前
hu完成签到,获得积分10
14秒前
上官若男应助Zenobia采纳,获得10
15秒前
CodeCraft应助Sodagreen2023采纳,获得10
16秒前
赘婿应助llllliu采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288858
求助须知:如何正确求助?哪些是违规求助? 4440637
关于积分的说明 13825255
捐赠科研通 4322964
什么是DOI,文献DOI怎么找? 2372842
邀请新用户注册赠送积分活动 1368324
关于科研通互助平台的介绍 1332194