In-network Placement of Reusable Computing Tasks in an SDN-based Network Edge

计算机科学 水准点(测量) GSM演进的增强数据速率 云计算 边缘计算 启发式 分布式计算 整数规划 任务(项目管理) 供应 隐藏物 软件定义的网络 解算器 计算机网络 算法 人工智能 操作系统 经济 管理 程序设计语言 地理 大地测量学
作者
Marica Amadeo,Claudia Campolo,Gianmarco Lia,Antonella Molinaro,Giuseppe Ruggeri
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-16 被引量:7
标识
DOI:10.1109/tmc.2023.3237765
摘要

Edge computing is aimed to support compute-intensive data-hungry interactive applications which can hardly run on resource-constrained consumer devices and may suffer from running in the cloud due to the long data transfer delay. The edge network nodes' heterogeneous and limited (compared to the cloud) capabilities make the computing task placement a challenge. In this paper, we propose a novel in-network task placement strategy aimed at minimizing the edge network resources usage. The proposal specifically accounts for time-limited reusable computing tasks, i.e., tasks whose output can be cached to serve requests from different consumers for a certain time. Caching such results, during their time validity, achieves the twofold benefit of reducing the service provisioning time and improving the edge resource utilization, by avoiding redundant computations and data exchange. The devised strategy is implemented as a network application of a Software-defined Networking Controller in charge of overseeing the edge domain. We formulate the optimal task placement through an integer linear programming problem, and we define an efficient heuristic algorithm that well approximates the solution achieved through a standard optimal solver. Achieved results show that the proposal successfully meets the targeted objectives in a wide variety of simulated scenarios, by outperforming benchmark solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
2秒前
华仔应助萤火采纳,获得10
2秒前
momo发布了新的文献求助10
3秒前
Jason完成签到 ,获得积分10
3秒前
njzhangyanyang完成签到,获得积分10
4秒前
CodeCraft应助青藤采纳,获得10
4秒前
冰魂应助LI电池采纳,获得10
4秒前
落落发布了新的文献求助10
4秒前
drew发布了新的文献求助10
5秒前
钼yanghua应助LKL林采纳,获得20
5秒前
wusuowei完成签到,获得积分10
6秒前
鸢翔flybird完成签到,获得积分10
6秒前
大模型应助kaiyuannnnnn采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
爆米花应助bitter采纳,获得10
9秒前
9秒前
momo完成签到,获得积分10
10秒前
10秒前
Amy完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
stt发布了新的文献求助10
12秒前
懒洋洋发布了新的文献求助10
12秒前
13秒前
顺顺发布了新的文献求助10
13秒前
123发布了新的文献求助10
13秒前
周小浪完成签到,获得积分10
14秒前
14秒前
罗克发布了新的文献求助10
14秒前
王楷楷发布了新的文献求助10
15秒前
萤火发布了新的文献求助10
15秒前
fufu发布了新的文献求助10
15秒前
贾舒涵发布了新的文献求助10
15秒前
15秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831932
求助须知:如何正确求助?哪些是违规求助? 3374210
关于积分的说明 10483852
捐赠科研通 3094099
什么是DOI,文献DOI怎么找? 1703329
邀请新用户注册赠送积分活动 819378
科研通“疑难数据库(出版商)”最低求助积分说明 771463