BDN-DDI: A bilinear dual-view representation learning framework for drug–drug interaction prediction

双线性插值 计算机科学 代表(政治) 药品 药物与药物的相互作用 下部结构 特征(语言学) 人工智能 特征学习 编码器 机器学习 药理学 医学 哲学 结构工程 政治 政治学 法学 计算机视觉 工程类 语言学 操作系统
作者
G. Ning,Yuping Sun,Jie Ling,Jijia Chen,Jiaxi He
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107340-107340 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107340
摘要

Drug-drug interactions (DDIs) refer to the potential effects of two or more drugs interacting with each other when used simultaneously, which may lead to adverse reactions or reduced drug efficacy. Accurate prediction of DDIs is a significant concern in recent years. Currently, the drug chemical substructure-based learning method has substantially improved DDIs prediction. However, we notice that most related works ignore the detailed interaction among atoms when extracting the substructure information of drugs. This problem results in incomplete information extraction and may limit the model's predictive ability. In this work, we proposed a novel framework named BDN-DDI (a bilinear dual-view representation learning framework for drug-drug interaction prediction) to infer potential DDIs. In the proposed framework, the encoder consists of six stacked BDN blocks, each of which extracts the feature representation of drug molecules through a bilinear representation extraction layer. The extracted feature is then used to learn embeddings of drug substructures from the single drug learning layer (intra-layer) and the drug-pair learning layer (inter-layer). Finally, the learned embeddings are fed into a decoder to predict DDI events. Based on our experiments, BDN-DDI has an AUROC value of over 99% for the warm-start task. Additionally, it outperformed the state-of-the-art methods by an average of 3.4% for the cold-start tasks. Finally, our method's effectiveness is further validated by visualizing several case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mimi发布了新的文献求助10
刚刚
浮游应助wan采纳,获得10
刚刚
1秒前
1秒前
Dean应助linkman采纳,获得100
3秒前
4秒前
jasonjiang完成签到 ,获得积分0
5秒前
李健应助橙子采纳,获得10
6秒前
哈123完成签到,获得积分10
6秒前
6秒前
jerryzhu完成签到,获得积分20
7秒前
ZZZ发布了新的文献求助10
8秒前
CHR完成签到,获得积分10
8秒前
Ava应助天真涵双采纳,获得10
8秒前
8秒前
星辰漫步完成签到,获得积分10
9秒前
齐刘海完成签到,获得积分10
9秒前
隐形曼青应助thunder采纳,获得10
10秒前
梓然完成签到,获得积分10
12秒前
宁燕完成签到,获得积分10
14秒前
lelsey发布了新的文献求助20
14秒前
赘婿应助喝奶牛的牛奶采纳,获得10
17秒前
yee完成签到,获得积分10
17秒前
天天快乐应助云上人采纳,获得10
17秒前
ZZZ完成签到,获得积分10
20秒前
21秒前
22秒前
24秒前
24秒前
24秒前
wanci应助结实的半双采纳,获得30
24秒前
好运好运好运关注了科研通微信公众号
24秒前
ruiheng完成签到,获得积分10
27秒前
27秒前
Yohann关注了科研通微信公众号
27秒前
27秒前
27秒前
123456发布了新的文献求助10
28秒前
思源应助尊敬小馒头采纳,获得10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4566013
求助须知:如何正确求助?哪些是违规求助? 3989435
关于积分的说明 12352925
捐赠科研通 3660902
什么是DOI,文献DOI怎么找? 2017479
邀请新用户注册赠送积分活动 1051886
科研通“疑难数据库(出版商)”最低求助积分说明 939436