Quantile-transformed multi-attention residual framework (QT-MARF) for medium-term PV and wind power prediction

残余物 计算机科学 均方误差 风力发电 分位数 光伏系统 可再生能源 变压器 人工智能 可靠性工程 数据挖掘 工程类 算法 统计 数学 电压 电气工程
作者
Adeel Feroz Mirza,Zhaokun Shu,Muhammad Usman,Majad Mansoor,Qiang Ling
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:220: 119604-119604 被引量:10
标识
DOI:10.1016/j.renene.2023.119604
摘要

The increasing generation of renewable electrical power, particularly from wind and solar sources, has significantly influenced the national energy and power transmission systems. However, accurate forecasting of wind and photovoltaic (PV) power remains challenging due to the stochastic and highly nonlinear nature of wind speed and solar irradiance. Traditional models often fail to produce accurate power forecasts. To address this challenge, this paper proposes a novel deep learning model based on the Quantile-Transformed Multi-Attention Residual Framework (QT-MARF). The proposed model is built on a Transformer architecture with Residual Net and Multi-Head Attention. QT-MARF utilizes sequential processing through gated residual networks, enabling the model to learn complex patterns and make accurate power forecasts. The model utilizes PV and wind data from Natal, Santa Vitoria, and the Chinese State Grid (CSG). Case studies are conducted to validate the estimation performance of the hybrid models. The proposed QT-MARF demonstrates promising results in terms of accuracy and efficiency, outperforming traditional models in metrics such as Mean Absolute Error (MAE), correlation coefficient (CC), Root Mean Squared Error (RMSE), and R-squared (R2). Comparative analysis with state-of-the-art techniques such as the Inception-embedded attention-based memory fully-connected network (IAMFN) model, CNN-GRU, CNN-LSTM, and RNN highlights the superiority of the proposed model. These findings suggest that the proposed model offers a promising solution for the challenging task of wind and PV power forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wse发布了新的文献求助10
刚刚
刚刚
小蜜蜂完成签到,获得积分10
刚刚
1秒前
苏苏完成签到,获得积分10
1秒前
优雅的冰岚完成签到,获得积分20
1秒前
善学以致用应助萤火虫采纳,获得10
1秒前
早日发文章完成签到 ,获得积分10
2秒前
小蘑菇应助乐视薯片采纳,获得10
2秒前
2秒前
vn完成签到,获得积分10
2秒前
英姑应助流年采纳,获得10
3秒前
3秒前
4秒前
4秒前
geold完成签到,获得积分10
5秒前
5秒前
这篇文献我不会完成签到,获得积分20
5秒前
5秒前
又又发布了新的文献求助10
5秒前
完美世界应助luckin9采纳,获得10
5秒前
5秒前
5秒前
在水一方应助Nelson_Foo采纳,获得10
6秒前
XJL发布了新的文献求助10
6秒前
sa完成签到 ,获得积分10
6秒前
11完成签到 ,获得积分20
6秒前
无心的紫山完成签到,获得积分10
6秒前
Tana完成签到,获得积分10
6秒前
7秒前
赘婿应助自然听兰采纳,获得30
7秒前
renlangfen发布了新的文献求助10
7秒前
研友_5X7BZ5完成签到,获得积分10
7秒前
望北楼主完成签到,获得积分10
8秒前
领悟完成签到,获得积分10
8秒前
WQ发布了新的文献求助20
8秒前
希望天下0贩的0应助露亮采纳,获得10
9秒前
Z17完成签到 ,获得积分10
9秒前
宝福X暴富发布了新的文献求助10
9秒前
9秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857