Detecting Oxygenator Thrombosis in ECMO: A Review of Current Techniques and an Exploration of Future Directions

氧合器 医学 体外膜肺氧合 重症监护医学 血栓形成 麻醉 外科 体外循环
作者
Jack Leerson,Andrew Tulloh,Francisco J. Tovar‐Lopez,Shaun D. Gregory,Hergen Buscher,Gary Rosengarten
出处
期刊:Seminars in Thrombosis and Hemostasis [Thieme Medical Publishers (Germany)]
卷期号:50 (02): 253-270 被引量:5
标识
DOI:10.1055/s-0043-1772843
摘要

Abstract Extracorporeal membrane oxygenation (ECMO) is a life-support technique used to treat cardiac and pulmonary failure, including severe cases of COVID-19 (coronavirus disease 2019) involving acute respiratory distress syndrome. Blood clot formation in the circuit is one of the most common complications in ECMO, having potentially harmful and even fatal consequences. It is therefore essential to regularly monitor for clots within the circuit and take appropriate measures to prevent or treat them. A review of the various methods used by hospital units for detecting blood clots is presented. The benefits and limitations of each method are discussed, specifically concerning detecting blood clots in the oxygenator, as it is concluded that this is the most critical and challenging ECMO component to assess. We investigate the feasibility of solutions proposed in the surrounding literature and explore two areas that hold promise for future research: the analysis of small-scale pressure fluctuations in the circuit, and real-time imaging of the oxygenator. It is concluded that the current methods of detecting blood clots cannot reliably predict clot volume, and their inability to predict clot location puts patients at risk of thromboembolism. It is posited that a more in-depth analysis of pressure readings using machine learning could better provide this information, and that purpose-built imaging could allow for accurate, real-time clotting analysis in ECMO components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
此话当真发布了新的文献求助10
1秒前
唯心止论发布了新的文献求助10
2秒前
xibaluma发布了新的文献求助10
4秒前
刘文思发布了新的文献求助10
4秒前
美好的从阳完成签到,获得积分20
5秒前
科研奇男子完成签到,获得积分10
6秒前
8秒前
他和她的猫完成签到,获得积分10
9秒前
隐形曼青应助贪玩的听荷采纳,获得10
9秒前
彭于晏应助拔刀斩落樱采纳,获得10
10秒前
joy完成签到 ,获得积分10
10秒前
11秒前
brainxue完成签到,获得积分10
13秒前
斯文败类应助大理学子采纳,获得10
13秒前
13秒前
niii发布了新的文献求助10
16秒前
晨风韵雨发布了新的文献求助10
17秒前
joy发布了新的文献求助10
17秒前
冰糕发布了新的文献求助20
17秒前
relink完成签到,获得积分10
18秒前
此话当真完成签到,获得积分10
18秒前
赘婿应助听风轻语采纳,获得10
18秒前
思源应助niii采纳,获得10
21秒前
小糊涂仙完成签到,获得积分10
22秒前
linci完成签到,获得积分10
22秒前
舒岑皓完成签到,获得积分20
22秒前
seven完成签到,获得积分10
23秒前
CAt5完成签到,获得积分10
23秒前
天天快乐应助楠楠采纳,获得10
25秒前
高高冰蝶应助快乐的书雁采纳,获得10
26秒前
gffh完成签到,获得积分10
26秒前
GXinG完成签到 ,获得积分10
26秒前
Nnn完成签到,获得积分10
27秒前
依灵完成签到,获得积分10
27秒前
28秒前
敏感的SCI完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785864
求助须知:如何正确求助?哪些是违规求助? 3331212
关于积分的说明 10250565
捐赠科研通 3046660
什么是DOI,文献DOI怎么找? 1672149
邀请新用户注册赠送积分活动 801039
科研通“疑难数据库(出版商)”最低求助积分说明 759979