数学
矩阵范数
低秩近似
奇异值
正定矩阵
稳健性(进化)
秩(图论)
基质(化学分析)
对称矩阵
应用数学
规范(哲学)
近似误差
组合数学
数学分析
特征向量
化学
材料科学
政治学
法学
复合材料
物理
基因
量子力学
生物化学
汉克尔矩阵
作者
Yuji Nakatsukasa,Taejun Park
摘要
The Nyström method is a popular choice for finding a low-rank approximation to a symmetric positive semidefinite matrix. The method can fail when applied to symmetric indefinite matrices for which the error can be unboundedly large. In this work, we first identify the main challenges in finding a Nyström approximation to symmetric indefinite matrices. We then prove the existence of a variant that overcomes the instability, and establish relative-error nuclear norm bounds of the resulting approximation that hold when the singular values decay rapidly. The analysis naturally leads to a practical algorithm, whose robustness is illustrated with experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI