Dissecting causal associations of type 2 diabetes with 111 types of ocular conditions: a Mendelian randomization study

孟德尔随机化 医学 青光眼 2型糖尿病 单核苷酸多态性 糖尿病 白内障 眼科 内科学 遗传学 基因型 内分泌学 生物 基因 遗传变异
作者
Rumeng Chen,Song Xu,Yu Ding,Leyang Li,Chen Huang,Meihua Bao,Sen Li,Qiuhong Wang
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:14 被引量:5
标识
DOI:10.3389/fendo.2023.1307468
摘要

Background Despite the well-established findings of a higher incidence of retina-related eye diseases in patients with diabetes, there is less investigation into the causal relationship between diabetes and non-retinal eye conditions, such as age-related cataracts and glaucoma. Methods We performed Mendelian randomization (MR) analysis to examine the causal relationship between type 2 diabetes mellitus (T2DM) and 111 ocular diseases. We employed a set of 184 single nucleotide polymorphisms (SNPs) that reached genome-wide significance as instrumental variables (IVs). The primary analysis utilized the inverse variance-weighted (IVW) method, with MR-Egger and weighted median (WM) methods serving as supplementary analyses. Results The results revealed suggestive positive causal relationships between T2DM and various ocular conditions, including “Senile cataract” (OR= 1.07; 95% CI: 1.03, 1.11; P =7.77×10 -4 ), “Glaucoma” (OR= 1.08; 95% CI: 1.02, 1.13; P =4.81×10 -3 ), and “Disorders of optic nerve and visual pathways” (OR= 1.10; 95% CI: 0.99, 1.23; P =7.01×10 -2 ). Conclusion Our evidence supports a causal relationship between T2DM and specific ocular disorders. This provides a basis for further research on the importance of T2DM management and prevention strategies in maintaining ocular health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
子车茗应助屹舟采纳,获得20
刚刚
慕青应助we采纳,获得10
刚刚
Ava应助熊丽萍采纳,获得10
1秒前
1秒前
zyy完成签到,获得积分10
1秒前
2秒前
2秒前
万能图书馆应助yzhn采纳,获得10
2秒前
852应助禤X采纳,获得10
2秒前
kx完成签到,获得积分10
3秒前
3秒前
4秒前
yowgo完成签到,获得积分10
4秒前
Nora完成签到,获得积分10
4秒前
lmgj发布了新的文献求助10
4秒前
tdtk发布了新的文献求助10
5秒前
hyf567完成签到,获得积分10
5秒前
sq发布了新的文献求助10
5秒前
Orange应助一一采纳,获得10
6秒前
6秒前
6秒前
现代的自行车完成签到 ,获得积分10
7秒前
小蘑菇应助ZH采纳,获得10
7秒前
kx发布了新的文献求助50
7秒前
7秒前
诚心毛豆完成签到,获得积分10
8秒前
8秒前
8秒前
NexusExplorer应助ChenxiDai采纳,获得10
10秒前
可爱的函函应助RENZ采纳,获得10
11秒前
小二郎应助mong采纳,获得10
11秒前
HHHH发布了新的文献求助10
11秒前
11秒前
11秒前
Lucas应助南兮采纳,获得10
12秒前
清爽凝阳发布了新的文献求助10
12秒前
orixero应助子车雁开采纳,获得10
12秒前
12秒前
jack发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194106
求助须知:如何正确求助?哪些是违规求助? 4376448
关于积分的说明 13629417
捐赠科研通 4231351
什么是DOI,文献DOI怎么找? 2320965
邀请新用户注册赠送积分活动 1319192
关于科研通互助平台的介绍 1269564