情态动词
扩散
计算机科学
统计物理学
物理
材料科学
热力学
高分子化学
作者
Xiaofei Wang,Xingxu Huang,Stephen J. Price,Chao Li
出处
期刊:Cornell University - arXiv
日期:2024-04-19
标识
DOI:10.48550/arxiv.2404.12973
摘要
The recent advancement of spatial transcriptomics (ST) allows to characterize spatial gene expression within tissue for discovery research. However, current ST platforms suffer from low resolution, hindering in-depth understanding of spatial gene expression. Super-resolution approaches promise to enhance ST maps by integrating histology images with gene expressions of profiled tissue spots. However, current super-resolution methods are limited by restoration uncertainty and mode collapse. Although diffusion models have shown promise in capturing complex interactions between multi-modal conditions, it remains a challenge to integrate histology images and gene expression for super-resolved ST maps. This paper proposes a cross-modal conditional diffusion model for super-resolving ST maps with the guidance of histology images. Specifically, we design a multi-modal disentangling network with cross-modal adaptive modulation to utilize complementary information from histology images and spatial gene expression. Moreover, we propose a dynamic cross-attention modelling strategy to extract hierarchical cell-to-tissue information from histology images. Lastly, we propose a co-expression-based gene-correlation graph network to model the co-expression relationship of multiple genes. Experiments show that our method outperforms other state-of-the-art methods in ST super-resolution on three public datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI