An Efficient Graphical Processing Unit-Accelerated Calibration of Crystal Plasticity Model Parameters by Multi-Objective Optimization With Automatic Differentiation-Based Sensitivities

作者
Fanglei Hu,Rong Zhou,KenHee Ryou,Rujing Zha,Stephen R. Niezgoda,Tianju Xue,Jian Cao
出处
期刊:Journal of Applied Mechanics [ASME International]
卷期号:93 (2): 1-62
标识
DOI:10.1115/1.4070536
摘要

Abstract Accurate and efficient determination of crystal plasticity (CP) material parameters is essential for predictive simulations that link microstructures, manufacturing processes, and material properties. This study presents a graphical processing unit (GPU)-accelerated pipeline for calibrating CP material parameters, integrating automatic differentiation (AD)-based sensitivities with gradient-based optimization, built upon our open-source jax-cpfem package. This method eliminates reliance on finite differences in gradient-based approaches while improving efficiency over gradient-free optimization. The effectiveness of the pipeline is demonstrated through five case studies covering various crystal structures and boundary conditions. First, the AD-based sensitivity analysis achieves over 10 × speedup compared to finite difference while maintaining accuracy for complex, nonlinear constitutive laws. Second, a comprehensive analysis of initial starting points on gradient-based optimization demonstrates that using appropriate bounds mitigates potential issues. Across both single-crystal and polycrystalline cases calibrating six material parameters, our pipeline requires approximately 7 × fewer iterations and achieves 3 × higher efficiency over popular gradient-free methods like Bayesian optimization, regardless of geometry complexity. Furthermore, the successful calibration of 12 parameters in a dual-phase steel model highlights the capability of the pipeline to handle high-dimensional optimization problems, which is challenging for gradient-free optimization. Finally, the robustness of our pipeline is validated using noisy synthetic data and experimental tensile data for wrought IN625 over a finite strain range. These results illustrate the applicability of our pipeline to real-world scenarios and its potential for high-dimensional optimization and promising applications in integrated computational materials engineering workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
huracan完成签到,获得积分10
1秒前
Linn完成签到 ,获得积分10
2秒前
草莓发布了新的文献求助10
2秒前
6666发布了新的文献求助100
3秒前
搜集达人应助高贵的沧海采纳,获得10
5秒前
6秒前
jie酱拌面发布了新的文献求助10
6秒前
ZHTNL发布了新的文献求助10
7秒前
7秒前
zzz完成签到 ,获得积分10
8秒前
CipherSage应助xie采纳,获得30
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Criminology34应助醉熏的烤鸡采纳,获得10
10秒前
10秒前
ZQZ发布了新的文献求助10
11秒前
11秒前
上官若男应助单纯晋鹏采纳,获得10
12秒前
wuwei发布了新的文献求助10
12秒前
ddddduan完成签到 ,获得积分0
13秒前
sandwich完成签到 ,获得积分10
13秒前
NexusExplorer应助ZHTNL采纳,获得10
13秒前
14秒前
GY00完成签到 ,获得积分10
14秒前
哈哈完成签到,获得积分10
14秒前
14秒前
14秒前
yourself完成签到,获得积分10
14秒前
所所应助邑橙采纳,获得10
15秒前
能干妙松发布了新的文献求助10
15秒前
15秒前
chocomi发布了新的文献求助10
17秒前
17秒前
yanna发布了新的文献求助100
17秒前
哈哈发布了新的文献求助10
18秒前
ZSC完成签到,获得积分10
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610351
求助须知:如何正确求助?哪些是违规求助? 4694821
关于积分的说明 14884565
捐赠科研通 4722012
什么是DOI,文献DOI怎么找? 2545111
邀请新用户注册赠送积分活动 1509931
关于科研通互助平台的介绍 1473042