New methods based on a genetic algorithm back propagation (GABP) neural network and general regression neural network (GRNN) for predicting the occurrence of trihalomethanes in tap water

人工神经网络 遗传算法 回归 计算机科学 反向传播 机器学习 人工智能 模式识别(心理学) 算法 数学 统计
作者
Kangle Liu,Tao Lin,Tingting Zhong,Xinran Ge,Fuchun Jiang,Xue Zhang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:870: 161976-161976 被引量:19
标识
DOI:10.1016/j.scitotenv.2023.161976
摘要

Monitoring trihalomethanes (THMs) levels in water supply systems is of great significance in ensuring drinking water safety. However, THMs detection is a time-consuming task. Developing predictive THMs models using parameters that are easier to obtain is an alternative. To date, there is still no application of optimization algorithms and general regression neural networks in predicting disinfection by-products levels. This study was to explore the feasibility of back propagation neural network (BPNN), genetic algorithm back propagation (GABP) neural network and general regression neural network (GRNN) for predicting THMs occurrence in real water supply systems. The results showed that the BPNN models' prediction ability was limited (test rp = 0.571-0.857, N25 = 61.5 %-91.5 %). Optimized by the genetic algorithm (GA), GABP models were generated and exhibited better prediction performance (test rp = 0.573 and 0.696-0.863, N25 = 68.2 %-93.6 %). However, GABP models took a lot of time and their prediction performance was unstable. A GRNN was then used to generate simpler neural network models, and the resulting prediction performance was excellent (total trihalomethanes and bromodichloromethane: test rp = 0.657-0.824, N25 = 81.8 %-100 %). In general, GRNN was the best at predicting THMs concentrations among the three models. However, it is worth noting that the prediction accuracy of bromodichloromethane (BDCM) was not high, which may be due to the absence of key parameters affecting BDCM formation. Accurate predictions of THMs by GRNN with these nine water parameters made THMs monitoring in real water supply systems possible and practical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
littlexu完成签到,获得积分10
3秒前
4秒前
4秒前
等待白安完成签到 ,获得积分10
5秒前
卢小白完成签到,获得积分10
5秒前
littlexu发布了新的文献求助10
6秒前
油纸伞发布了新的文献求助10
10秒前
10秒前
xingxinghan完成签到,获得积分10
10秒前
热沙来提发布了新的文献求助10
12秒前
小二郎应助flos采纳,获得10
14秒前
14秒前
xingxinghan发布了新的文献求助10
15秒前
zsl完成签到 ,获得积分10
15秒前
ytrewq完成签到 ,获得积分10
16秒前
乐乐应助科研小菜鸟i采纳,获得10
16秒前
17秒前
彭于晏应助呆呆芭乐采纳,获得10
21秒前
黎明发布了新的文献求助10
22秒前
star完成签到 ,获得积分20
22秒前
小四喜发布了新的文献求助10
24秒前
恸哭的千鸟完成签到,获得积分10
26秒前
27秒前
若水完成签到,获得积分0
28秒前
852应助阳光的晓槐采纳,获得10
29秒前
壮观凌珍发布了新的文献求助10
29秒前
31秒前
火星上白风完成签到,获得积分10
33秒前
34秒前
flos发布了新的文献求助10
34秒前
sun_lin完成签到 ,获得积分10
40秒前
drtianyunhong发布了新的文献求助10
40秒前
42秒前
拼搏绿柳完成签到,获得积分10
43秒前
我是弱智先帮我完成签到,获得积分10
44秒前
搜集达人应助hyhyhyhy采纳,获得10
44秒前
Orange应助tong采纳,获得20
49秒前
思源应助小白采纳,获得10
51秒前
小马甲应助追寻啤酒采纳,获得10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228136
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751