Noninvasive Evaluation of Lupus Nephritis Activity Using a Radiomics Machine Learning Model Based on Ultrasound

接收机工作特性 医学 狼疮性肾炎 机器学习 预测值 人工智能 队列 超声波 曲线下面积 二元分类 试验预测值 放射科 支持向量机 内科学 计算机科学 疾病
作者
Xiachuan Qin,Linlin Xia,Chao Zhu,Xiaomin Hu,Weihan Xiao,Xisheng Xie,Chaoxue Zhang
出处
期刊:Journal of Inflammation Research [Dove Medical Press]
卷期号:Volume 16: 433-441 被引量:9
标识
DOI:10.2147/jir.s398399
摘要

Introduction: To explore whether ultrasonic radiomics extracted by machine learning method can noninvasively evaluate lupus nephritis (LN) activity. Materials and Methods: This retrospective study included 149 patients with LN diagnosed by renal biopsy. They were divided into a training cohort (n=104) and a test cohort (n=45). Ultrasonic radiomics features were extracted from the ultrasound images, and the radiomics features were constructed. Furthermore, five machine learning algorithms were compared to evaluate LN activity. The performance of the binary classification model was evaluated by the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Results: The average AUC of the five machine learning models was 79.4, of which the MLP model was the best. The AUC of the training group was 89.1, with an accuracy of 81.7%, a sensitivity of 83%, a specificity of 80.7%, a negative predictive value of 85.2%, and a positive predictive value of 78%. The AUC of the test group was 82.2, the accuracy was 73.3%, the sensitivity was 78.9%, the specificity was 69.2%, the negative predictive value was 81.8%, and the positive predictive value was 65.2%. Conclusion: Machine learning classifier based on ultrasonic radiomics has high accuracy for LN activity. The model can be used to noninvasively detect the activity of LN and can be an effective tool to assist the clinical decision-making process. Keywords: systemic lupus erythematosus, lupus nephritis, activity, ultrasound, machine learning
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
where完成签到,获得积分10
1秒前
丿夜幕灬降临丨完成签到,获得积分10
2秒前
1111完成签到,获得积分10
3秒前
3秒前
强砸完成签到,获得积分10
4秒前
科研通AI2S应助kiwi采纳,获得10
5秒前
holi完成签到 ,获得积分10
7秒前
周芷卉完成签到 ,获得积分10
8秒前
anan完成签到 ,获得积分10
9秒前
LIX完成签到,获得积分10
11秒前
松鼠15111完成签到,获得积分10
11秒前
Dong完成签到 ,获得积分10
11秒前
今天只做一件事完成签到,获得积分0
12秒前
斯文败类应助liang采纳,获得10
13秒前
旧雨新知完成签到 ,获得积分0
13秒前
喵喵完成签到 ,获得积分10
14秒前
小螃蟹完成签到 ,获得积分10
14秒前
HEAUBOOK应助Geodada采纳,获得10
15秒前
16秒前
夜话风陵杜完成签到 ,获得积分0
20秒前
木槿花难开完成签到,获得积分10
23秒前
24秒前
zplease完成签到,获得积分10
26秒前
蓝桉发布了新的文献求助30
28秒前
鲍志泽发布了新的文献求助10
30秒前
Billie完成签到,获得积分10
31秒前
科研人完成签到 ,获得积分10
31秒前
Duckseid完成签到,获得积分10
32秒前
Geodada完成签到,获得积分10
32秒前
丸子完成签到 ,获得积分10
36秒前
csu_zs完成签到,获得积分10
39秒前
40秒前
魏煜佳完成签到,获得积分10
41秒前
hucanming完成签到,获得积分10
42秒前
just_cook完成签到,获得积分10
42秒前
Echoheart发布了新的文献求助10
43秒前
河中医朵花完成签到,获得积分10
43秒前
负责惊蛰完成签到 ,获得积分10
43秒前
lzy关闭了lzy文献求助
45秒前
尾状叶发布了新的文献求助10
45秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801096
求助须知:如何正确求助?哪些是违规求助? 3346745
关于积分的说明 10330078
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807509
科研通“疑难数据库(出版商)”最低求助积分说明 763726