亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Two-stage Method with a Shared 3D U-Net for Left Atrial Segmentation of Late Gadolinium-Enhanced MRI Images

雅卡索引 豪斯多夫距离 分割 Sørensen–骰子系数 人工智能 计算机科学 卷积神经网络 深度学习 模式识别(心理学) 稳态自由进动成像 掷骰子 磁共振成像 图像分割 数据挖掘 医学 数学 放射科 统计
作者
Jieyun Bai,Ruiyu Qiu,Jianyu Chen,Liyuan Wang,Lulu Li,Yanfeng Tian,Huijun Wang,Yaosheng Lu,Jichao Zhao
出处
期刊:Cardiovascular innovations and applications [Compuscript]
卷期号:8 (1) 被引量:2
标识
DOI:10.15212/cvia.2023.0039
摘要

Objective: This study was aimed at validating the accuracy of a proposed algorithm for fully automatic 3D left atrial segmentation and to compare its performance with existing deep learning algorithms. Methods: A two-stage method with a shared 3D U-Net was proposed to segment the 3D left atrium. In this architecture, the 3D U-Net was used to extract 3D features, a two-stage strategy was used to decrease segmentation error caused by the class imbalance problem, and the shared network was designed to decrease model complexity. Model performance was evaluated with the DICE score, Jaccard index and Hausdorff distance. Results: Algorithm development and evaluation were performed with a set of 100 late gadolinium-enhanced cardiovascular magnetic resonance images. Our method achieved a DICE score of 0.918, a Jaccard index of 0.848 and a Hausdorff distance of 1.211, thus, outperforming existing deep learning algorithms. The best performance of the proposed model (DICE: 0.851; Jaccard: 0.750; Hausdorff distance: 4.382) was also achieved on a publicly available 2013 image data set. Conclusion: The proposed two-stage method with a shared 3D U-Net is an efficient algorithm for fully automatic 3D left atrial segmentation. This study provides a solution for processing large datasets in resource-constrained applications. Significance Statement: Studying atrial structure directly is crucial for comprehending and managing atrial fibrillation (AF). Accurate reconstruction and measurement of atrial geometry for clinical purposes remains challenging, despite potential improvements in the visibility of AF-associated structures with late gadolinium-enhanced magnetic resonance imaging. This difficulty arises from the varying intensities caused by increased tissue enhancement and artifacts, as well as variability in image quality. Therefore, an efficient algorithm for fully automatic 3D left atrial segmentation is proposed in the present study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lmplzzp完成签到,获得积分10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
00完成签到,获得积分10
7秒前
53秒前
57秒前
654-2发布了新的文献求助10
1分钟前
juanjuan发布了新的文献求助10
1分钟前
1分钟前
Chris发布了新的文献求助10
1分钟前
juanjuan完成签到,获得积分10
1分钟前
Hillson完成签到,获得积分10
1分钟前
sky完成签到 ,获得积分10
1分钟前
Hiraeth完成签到 ,获得积分10
1分钟前
坦率的语芙完成签到,获得积分10
1分钟前
打打应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
天天好心覃完成签到 ,获得积分10
2分钟前
自觉的夏蓉完成签到,获得积分10
2分钟前
jeff完成签到,获得积分10
2分钟前
注恤明完成签到,获得积分10
2分钟前
3分钟前
3分钟前
楠楠2001完成签到 ,获得积分10
3分钟前
3分钟前
陈雨发布了新的文献求助10
3分钟前
3分钟前
4分钟前
Xianjr03发布了新的文献求助10
4分钟前
幽默赛君完成签到 ,获得积分10
4分钟前
今天做实验了吗完成签到 ,获得积分10
4分钟前
Xianjr03完成签到,获得积分10
5分钟前
jiaweiluo发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
自由擎汉发布了新的文献求助10
5分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4080547
求助须知:如何正确求助?哪些是违规求助? 3619955
关于积分的说明 11486359
捐赠科研通 3335751
什么是DOI,文献DOI怎么找? 1833831
邀请新用户注册赠送积分活动 902794
科研通“疑难数据库(出版商)”最低求助积分说明 821313