A Two-stage Method with a Shared 3D U-Net for Left Atrial Segmentation of Late Gadolinium-Enhanced MRI Images

雅卡索引 豪斯多夫距离 分割 Sørensen–骰子系数 人工智能 计算机科学 卷积神经网络 深度学习 模式识别(心理学) 稳态自由进动成像 掷骰子 磁共振成像 图像分割 数据挖掘 医学 数学 放射科 统计
作者
Jieyun Bai,Ruiyu Qiu,Jianyu Chen,Liyuan Wang,Lulu Li,Yanfeng Tian,Huijun Wang,Yaosheng Lu,Jichao Zhao
出处
期刊:Cardiovascular innovations and applications [Compuscript]
卷期号:8 (1) 被引量:2
标识
DOI:10.15212/cvia.2023.0039
摘要

Objective: This study was aimed at validating the accuracy of a proposed algorithm for fully automatic 3D left atrial segmentation and to compare its performance with existing deep learning algorithms. Methods: A two-stage method with a shared 3D U-Net was proposed to segment the 3D left atrium. In this architecture, the 3D U-Net was used to extract 3D features, a two-stage strategy was used to decrease segmentation error caused by the class imbalance problem, and the shared network was designed to decrease model complexity. Model performance was evaluated with the DICE score, Jaccard index and Hausdorff distance. Results: Algorithm development and evaluation were performed with a set of 100 late gadolinium-enhanced cardiovascular magnetic resonance images. Our method achieved a DICE score of 0.918, a Jaccard index of 0.848 and a Hausdorff distance of 1.211, thus, outperforming existing deep learning algorithms. The best performance of the proposed model (DICE: 0.851; Jaccard: 0.750; Hausdorff distance: 4.382) was also achieved on a publicly available 2013 image data set. Conclusion: The proposed two-stage method with a shared 3D U-Net is an efficient algorithm for fully automatic 3D left atrial segmentation. This study provides a solution for processing large datasets in resource-constrained applications. Significance Statement: Studying atrial structure directly is crucial for comprehending and managing atrial fibrillation (AF). Accurate reconstruction and measurement of atrial geometry for clinical purposes remains challenging, despite potential improvements in the visibility of AF-associated structures with late gadolinium-enhanced magnetic resonance imaging. This difficulty arises from the varying intensities caused by increased tissue enhancement and artifacts, as well as variability in image quality. Therefore, an efficient algorithm for fully automatic 3D left atrial segmentation is proposed in the present study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
wnche完成签到,获得积分10
3秒前
柴敏发布了新的文献求助10
5秒前
15秒前
现代完成签到,获得积分0
15秒前
量子星尘发布了新的文献求助10
16秒前
22秒前
23秒前
大个应助科研通管家采纳,获得10
27秒前
彭于晏应助科研通管家采纳,获得10
27秒前
SZ应助科研通管家采纳,获得10
27秒前
和平使命应助科研通管家采纳,获得10
27秒前
斯文败类应助科研通管家采纳,获得10
27秒前
SZ应助科研通管家采纳,获得20
28秒前
江南第八发布了新的文献求助10
29秒前
呆萌的傲之完成签到,获得积分10
31秒前
jackhlj完成签到,获得积分10
33秒前
34秒前
叶痕TNT完成签到 ,获得积分10
35秒前
allrubbish完成签到,获得积分10
36秒前
江南第八完成签到,获得积分10
37秒前
槿一完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
40秒前
LiQi完成签到 ,获得积分10
45秒前
lll发布了新的文献求助10
50秒前
量子星尘发布了新的文献求助10
57秒前
研友_VZG7GZ应助lll采纳,获得10
58秒前
如意竺完成签到,获得积分10
1分钟前
科研通AI2S应助风清扬采纳,获得10
1分钟前
1分钟前
haprier完成签到 ,获得积分10
1分钟前
幼儿园扛把子完成签到 ,获得积分10
1分钟前
可爱紫文完成签到 ,获得积分10
1分钟前
昭荃完成签到 ,获得积分0
1分钟前
科研通AI5应助yuuu采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
爱笑半莲发布了新的文献求助80
1分钟前
abccd123完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4852155
求助须知:如何正确求助?哪些是违规求助? 4150456
关于积分的说明 12857082
捐赠科研通 3898693
什么是DOI,文献DOI怎么找? 2142559
邀请新用户注册赠送积分活动 1162325
关于科研通互助平台的介绍 1062725