Feature selection-based decision model for UAV path planning on rough terrains

运动规划 地形 计算机科学 偏移量(计算机科学) 特征(语言学) 路径(计算) 人工智能 机器人 地理 语言学 哲学 地图学 程序设计语言
作者
Hub Ali,Gang Xiong,Muhammad Husnain Haider,Tariku Sinshaw Tamir,Xisong Dong,Zhen Shen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:232: 120713-120713 被引量:16
标识
DOI:10.1016/j.eswa.2023.120713
摘要

Path planning and obstacle avoidance in 3D terrain have been identified as a monumental challenge for a UAV in a variety of autonomous missions, such as disaster management, and search and rescue operations. In large terrain areas, it is a key problem for traditional approaches to search within the point-cloud maps to find a global path for a UAV considering the flight safety, maneuverability, weather constraints, and fuel cost. Hence, this paper proposes a trajectory planning technique for global and local path planning of a fixed-wing UAV above 3D terrain under static and dynamic constraints. For global path generation, a novel feature selection-based decision model has been proposed to select the features of a point-cloud map and transform them into the feature set. The feature set is utilized by an A* multi-directional planner with an extensive search area to deliver an optimal global path. The global path is assumed as the UAV's reference waypoints. The motion of the UAV on reference waypoints is simplified with two coordinates (R,d), where R is the cumulative distance covered by the UAV along the reference waypoints and d is its offset distance from the reference line segment in time t. For the local path planning, offset trajectories are generated along with reference waypoints to avoid collisions. Cost functions have been added so that the best global and local path can be chosen, taking into account altitude, weather, and fuel constraints. The simulation results and comparison show that the proposed approach outperforms various other 3D UAV path planning techniques in complex terrain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJHUA完成签到,获得积分10
10秒前
12秒前
正直的松鼠完成签到 ,获得积分10
16秒前
zcbb完成签到,获得积分10
19秒前
21秒前
聂青枫完成签到,获得积分10
23秒前
nater3ver完成签到,获得积分10
23秒前
Hiram完成签到,获得积分10
24秒前
25秒前
zcbb发布了新的文献求助10
28秒前
nater2ver完成签到,获得积分10
34秒前
书生也是小郎中完成签到 ,获得积分10
35秒前
高高代珊完成签到 ,获得积分10
36秒前
40秒前
41秒前
xmjxmj217完成签到 ,获得积分10
43秒前
wangwenzhe发布了新的文献求助10
44秒前
wenhuanwenxian完成签到 ,获得积分10
45秒前
nater1ver完成签到,获得积分10
47秒前
丘比特应助wangwenzhe采纳,获得10
53秒前
dong完成签到 ,获得积分10
55秒前
56秒前
Lucas应助ju龙哥采纳,获得10
57秒前
1分钟前
1分钟前
77完成签到 ,获得积分10
1分钟前
小学生学免疫完成签到 ,获得积分10
1分钟前
ju龙哥发布了新的文献求助10
1分钟前
杨抠脚完成签到,获得积分10
1分钟前
舒心的芝麻完成签到 ,获得积分10
1分钟前
关中人完成签到,获得积分10
1分钟前
ju龙哥完成签到,获得积分10
1分钟前
panpanliumin完成签到,获得积分0
1分钟前
乐观的星月完成签到 ,获得积分10
1分钟前
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782730
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234493
捐赠科研通 3043122
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994