免疫系统
微翅目
接种疫苗
生物
壳聚糖
免疫
灭活疫苗
碱性磷酸酶
免疫增强剂
鲈鱼(鱼)
抗体
微生物学
免疫学
渔业
生物化学
酶
作者
Fei‐Fan Xu,Fu‐Yi Jiang,Guoqing Zhou,Jun‐Yao Xia,Fei Yang,Bin Zhu
摘要
The disease caused by Micropterus salmoides rhabdovirus (MSRV) has brought substantial economic losses to the largemouth bass aquaculture industry in China. Vaccination was considered as a potential way to prevent and control this disease. As a kind of sustained and controlled release system, alginate and chitosan microspheres (SA-CS) are widely used in the development of oral vaccination for fish. Here, we prepared a king of alginate-chitosan composite microsphere to encapsulate the second segment of MSRV glycoprotein (G2 protein) and then evaluated the immune effect of the microsphere vaccine on largemouth bass. Largemouth bass were vaccinated via intragastric immunization by different treatments (PBS, SA-CS, G2 and SA-CS-G2). The results showed that a stronger immune response including serum antibody levels, immune-related physiological indexes (acid phosphatase, alkaline phosphatase, superoxide dismutase and total antioxidant capacity) and the expression of immune-related gene (IgM、IL-8、IL-1β、CD4、TGF-β、TNF-α) can be induced obviously with SA-CS-G2 groups compared with G2 groups when fish were vaccinated. Furthermore, fish were injected with a lethal dose of MSRV after immunization for 28 days, and the highest relative percentage survival (54.8%) was observed in SA-CS-G2 group (40 μg per fish), which is significantly higher than that of G2 group (25.8%). This study showed that alginate-chitosan microspheres as the vaccine carrier can effectively improve the immune effect of oral vaccination and induce better immune protection effect against MSRV infection.
科研通智能强力驱动
Strongly Powered by AbleSci AI