Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair

神经干细胞 脊髓损伤 脚手架 3D生物打印 再生(生物学) 细胞生物学 神经细胞 化学 干细胞 脊髓 组织工程 神经科学 生物医学工程 细胞 生物 医学 生物化学
作者
Xiaoyun Liu,Shaoshuai Song,Zhongjin Chen,Chen Gao,Yuxuan Li,Yu Luo,Jie Huang,Zhijun Zhang
出处
期刊:Acta Biomaterialia [Elsevier BV]
卷期号:151: 148-162 被引量:46
标识
DOI:10.1016/j.actbio.2022.08.031
摘要

Precise fabrication of biomimetic three-dimensional (3D) structure and effective neuronal differentiation under the pathological environment are the key to neural stem cell (NSC)-based spinal cord injury (SCI) therapy. In this study, we have developed a spinal cord-like bioprinted scaffold loading with OSMI-4, a small molecule O-GlcNAc transferase (OGT) inhibitor, to induce and guide the neuron differentiation of NSCs for efficient SCI repair. To achieve this, we developed a supramolecular bioink (SM bioink) consisting of methacrylated gelatin and acrylated β-cyclodextrins to load NSCs and OSMI-4. This bioink showed fast gelation and stable mechanical properties, facilitating bioprinting of functional neural scaffolds. Moreover, the weak host-guest cross-linking of the SM scaffolds significantly improved the cell-matrix interaction for the infiltration and migration of NSCs. What's more, the sustained delivery of OSMI-4 remarkably enhanced the intrinsic neuronal differentiation of the encapsulated NSCs in vitro by inhibiting Notch signaling pathway. In vivo experiment further revealed that the functional bioprinted scaffolds promoted the neuronal regeneration and axonal growth, leading to significant locomotor recovery of the SCI model rats. Together, the NSC-laden bioprinted SM scaffolds in combination with sustained release of the therapeutic agent OSMI-4 largely induced neuronal differentiation of NSCs and thus leading to efficient SCI repair. STATEMENT OF SIGNIFICANCE: Efficient neuronal differentiation of neural stem cells (NSCs) under the complex pathological microenvironment of spinal cord injury (SCI) is a major challenge of neural regeneration. By the use of a supramolecular bioink, we bioprinted a spinal cord-like scaffold loaded with NSCs and a small molecule drug OSMI-4 to significantly induce neuronal differentiation of NSCs for efficient SCI repair in vivo. The scaffolds with spinal cord-like structure can support the interaction and neuronal differentiation of NSCs by providing a dynamic matrix and a source of molecular release of OSMI-4. The influences of OSMI-4 on NSCs and its molecular mechanism were investigated for the first time in this study. Altogether, three-dimensional bioprinting fabrication of NSC- and small molecule drug-laden biomimetic construct may represent a promising therapeutic strategy for SCI repair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
CH0304发布了新的文献求助10
刚刚
1秒前
格格完成签到,获得积分10
1秒前
2秒前
2秒前
violinsj完成签到,获得积分0
3秒前
4秒前
4秒前
机灵的煎蛋完成签到 ,获得积分10
5秒前
听雨完成签到,获得积分10
5秒前
Think发布了新的文献求助10
5秒前
个性尔白发布了新的文献求助10
5秒前
武琳捷完成签到,获得积分10
5秒前
光亮盼柳发布了新的文献求助10
7秒前
英俊的铭应助yyhh采纳,获得10
7秒前
yier完成签到,获得积分10
7秒前
小巧凝丹发布了新的文献求助10
8秒前
10秒前
zho应助MY采纳,获得10
11秒前
11秒前
11秒前
11秒前
顾矜应助冯123采纳,获得10
12秒前
谨慎紫霜发布了新的文献求助10
12秒前
平常的毛豆应助MeilingLi采纳,获得30
13秒前
善学以致用应助坦率道之采纳,获得10
13秒前
脑洞疼应助cherish采纳,获得10
13秒前
英格兰胖头鱼完成签到 ,获得积分10
13秒前
15秒前
15秒前
123完成签到,获得积分10
15秒前
zhaoxiaonuan发布了新的文献求助10
15秒前
17秒前
科研通AI2S应助感动世倌采纳,获得10
17秒前
天天快乐应助David采纳,获得10
17秒前
灿烂发布了新的文献求助30
17秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807102
求助须知:如何正确求助?哪些是违规求助? 3351867
关于积分的说明 10356328
捐赠科研通 3067877
什么是DOI,文献DOI怎么找? 1684778
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765767