甲脒
异质结
化学物理
钙钛矿(结构)
载流子
光催化
材料科学
密度泛函理论
卤化物
电荷密度
光电子学
化学
纳米技术
计算化学
无机化学
催化作用
结晶学
物理
量子力学
生物化学
作者
Shaomin Peng,Changhong Guo,Jia Guo,Wei Song,Ming Sun,Guichuan Xing,Lin Yu
标识
DOI:10.1002/anie.202506436
摘要
Solar‐driven photocatalysis holds promise for fuel production, with halide perovskites leading owing to superior light absorption and carrier diffusion. However, precise control and understanding of interfacial charge separation dynamics in their heterostructures remain challenging. Using formamidinium lead bromide/molybdenum disulfide (FAPbBr3/MoS2) as a model, we engineered Pb‐rich, Pb‐neutral, and Pb‐deficient surfaces via precursor stoichiometry tuning, modulating interface coupling through Pb‐S bonds. High‐density atomic bridging in Pb‐rich interfaces boosts photogenerated charge separation efficiency from 29% to 63%, yielding a 98‐fold hydrogen production increase and record 8.69% solar‐to‐hydrogen efficiency. Theoretical and experimental results demonstrate that the long carrier diffusion length and high photogenerated charge density of perovskites create a steep charge density gradient at the interface. This gradient directly induces a non‐equilibrium internal electric field, which governs the charge transport dynamics. This work demonstrates the feasibility of sophisticated heterointerface tailoring and advances the understanding of the driving forces behind interfacial charge separation for perovskite photocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI