亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structure-Directed Pan-Specific T-Cell Receptor–Peptide-Major Histocompatibility Complex Interaction Prediction

主要组织相容性复合体 计算生物学 受体 T细胞受体 生物 化学 T细胞 遗传学 抗原 生物化学 免疫系统
作者
Lijuan Gao,Yumeng Zhang,Fang Ge,Shanshan Li,Yuming Guo,Jiangning Song,Dong‐Jun Yu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00055
摘要

T-cell receptors (TCRs) play a pivotal role in the adaptive immune system, and understanding their antigen recognition mechanism remains a critical area of research. With the increasing availability of binding and interaction data between TCRs and peptide-major histocompatibility complexes (pMHCs), data-driven computational methods are emerging as powerful tools with significant potential for advancement. In this study, we collected and curated comprehensive sequence and structure data sets of TCRs from human CD8+ T-cells and cognate epitopes presented by MHC class I molecules. We developed two innovative computational frameworks: SG-TPMI, a lightweight, extensible, and structure-guided model for predicting TCR-pMHC binding specificity, and Seq/Struct-TCS, a pair of models (sequence-based and structure-based) for predicting contact sites within TCR-pMHC complexes. Notably, we directly integrated MHC-I alpha helices (or pseudosequences) and structural information on the protein complex into the prediction models. Our comprehensive modeling approach enabled quantitative investigations of TCR-pMHC interaction mechanisms, empowering SG-TPMI and Struct-TCS to achieve performances comparable to those of state-of-the-art methods. Furthermore, our results highlight the necessity of CDR1 and CDR2 loops as well as MHC restriction in pan-specific TCR-pMHC interaction prediction, providing new insights into TCR recognition. In summary, we not only propose SG-TPMI as an effective computational method for predicting TCR-pMHC binary interactions but also introduce the Seq/Struct-TCS design for predicting TCR interacting sites with peptide or MHC alpha helices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
ypyue完成签到,获得积分10
9秒前
9秒前
jeff发布了新的文献求助10
11秒前
ypyue发布了新的文献求助10
13秒前
ffl完成签到 ,获得积分10
14秒前
我是老大应助有人采纳,获得30
17秒前
今后应助ypyue采纳,获得10
29秒前
科目三应助Howeveran采纳,获得10
34秒前
科研通AI5应助番番采纳,获得10
41秒前
45秒前
zjx完成签到,获得积分10
46秒前
科研通AI5应助可靠的寒风采纳,获得10
49秒前
49秒前
Howeveran发布了新的文献求助10
53秒前
54秒前
56秒前
CC发布了新的文献求助10
59秒前
preepero发布了新的文献求助10
59秒前
preepero完成签到,获得积分10
1分钟前
zzhang完成签到,获得积分20
1分钟前
脑洞疼应助CC采纳,获得10
1分钟前
爱莉希雅完成签到 ,获得积分10
1分钟前
科研通AI5应助zzhang采纳,获得10
1分钟前
1分钟前
盐植物完成签到,获得积分10
1分钟前
四氧化三铁完成签到,获得积分10
1分钟前
hmf1995完成签到 ,获得积分10
2分钟前
芝麻完成签到,获得积分0
2分钟前
鱼块完成签到 ,获得积分10
2分钟前
羽生结弦的馨馨完成签到,获得积分10
2分钟前
Camelia完成签到,获得积分10
2分钟前
NagatoYuki完成签到,获得积分10
2分钟前
2分钟前
bingbing完成签到,获得积分10
2分钟前
Lancet发布了新的文献求助10
2分钟前
浅晨发布了新的文献求助10
2分钟前
2分钟前
Ephemeral完成签到 ,获得积分10
2分钟前
mmyhn发布了新的文献求助10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333675
关于积分的说明 10262958
捐赠科研通 3049526
什么是DOI,文献DOI怎么找? 1673602
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760504