亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of 4PCS and KD-ICP Alignment Methods Based on ISS Feature Points for Rail Wear Detection

特征(语言学) 计算机科学 人工智能 哲学 语言学
作者
Jie Shan,Hao Shi,Niu Zhi
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:15 (7): 3455-3455
标识
DOI:10.3390/app15073455
摘要

In order to detect the abrasion of rails, a new point cloud alignment method combining 4-points congruent sets (4PCS) coarse alignment based on internal shape signature (ISS) and K-dimensional iterative closest points (KD-ICP) fine alignment is proposed, and for the first time, the combined algorithm is applied to the detection of rail wear. Due to the large amount of 3D rail point cloud data collected by the 3D line laser sensor, the original data are first downsampled by voxel filtering. Then, ISS feature points are extracted from the processed point cloud data for 4PCS coarse alignment, and the feature points are quantitatively analyzed, which in turn provides good alignment conditions for fine alignment. Then, the K-dimensional tree structure is used for the near-neighbor search to improve the alignment efficiency of the ICP algorithm. Finally, the total rail wear is calculated by combining the fine alignment results with the wear calculation formula. The experimental results show that when the number of ISS feature points extracted is 4496, the 4PCS coarse alignment algorithm based on ISS feature points is higher than the original 4PCS algorithm as well as the other algorithms in terms of alignment accuracy; the ICP fine alignment algorithm based on the kd-tree is less than the original ICP algorithm as well as the other algorithms in terms of the time consumed. Further, the proposed new ISS-4PCS + KD-ICP two-stage point cloud alignment method is superior to the original 4PCS + ICP algorithm both in terms of alignment accuracy and runtime. The combined algorithm is applied to the detection of rail wear for the first time, which provides a reference for the non-contact rail wear detection method. The high accuracy and low time consumption of the proposed algorithm lays a good foundation for the calculation of rail wear in the next step.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
andrele应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI5应助James采纳,获得10
3分钟前
啦啊啦啦啦应助柏风华采纳,获得20
3分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
bc应助科研通管家采纳,获得20
4分钟前
柏风华完成签到,获得积分10
4分钟前
5分钟前
5分钟前
知行者完成签到 ,获得积分10
5分钟前
Jasmineyfz完成签到 ,获得积分10
5分钟前
andrele应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
yinlao完成签到,获得积分10
6分钟前
大模型应助南瓜采纳,获得10
7分钟前
bc应助科研通管家采纳,获得30
8分钟前
bc应助科研通管家采纳,获得30
8分钟前
bc应助科研通管家采纳,获得30
8分钟前
8分钟前
南瓜发布了新的文献求助10
8分钟前
8分钟前
南瓜完成签到,获得积分10
8分钟前
9分钟前
James发布了新的文献求助10
9分钟前
小蘑菇应助科研通管家采纳,获得10
10分钟前
andrele应助科研通管家采纳,获得10
10分钟前
高数数完成签到 ,获得积分10
10分钟前
11分钟前
moroa完成签到,获得积分10
11分钟前
___淡完成签到 ,获得积分10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
Eason完成签到,获得积分10
12分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795558
求助须知:如何正确求助?哪些是违规求助? 3340610
关于积分的说明 10300759
捐赠科研通 3057127
什么是DOI,文献DOI怎么找? 1677500
邀请新用户注册赠送积分活动 805424
科研通“疑难数据库(出版商)”最低求助积分说明 762529