亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semantic Prompt Enhancement for Semi-Supervised Low-Light Salient Object Detection

计算机科学 人工智能 突出 对象(语法) 计算机视觉 自然语言处理 目标检测 模式识别(心理学)
作者
Nana Yu,Jie Wang,Zihao Zhang,Yahong Han,Weiping Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2025.3555828
摘要

Most existing salient object detection (SOD) models are designed based on data collected in well-lit scenes, which is entirely inadequate for low-light conditions. Although recent models are designed for low-light conditions, they still have limitations. First, they simply integrate features without considering the impact of low-light scenes and fail to enhance the contextual information around salient objects. Second, in extremely dark scenes, it is difficult for the human eye to distinguish between the foreground and background, posing significant challenges for data labeling. To address these issues, we design a brightness Retinex enhancer (BRE) tailored for low-light SOD tasks and, for the first time, explore performing low-light SOD within a semi-supervised framework. By using sparse labeled semantic prompts to augment a large amount of unlabeled data, we mitigate the annotation burden while avoiding ineffective labeling in low-light conditions. More specifically, we first use Retinex decomposition to filter out the influence of illumination, while the semantic features extracted by a large model serve as semantic prompts to assist in enhancement. In addition, we introduce a context-guided encoder (CGE) to improve the model's understanding of salient objects. Finally, both labeled and unlabeled data undergo joint consistency training between the shared decoder (SD) and the perturbation decoder. The semi-supervised model enhances low-light SOD performance while also alleviating the burden of data annotation. Extensive experiments demonstrate that, compared with state-of-the-art fully supervised SOD models, the proposed semi-supervised model achieves highly competitive results across multiple test datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emperor完成签到 ,获得积分0
3秒前
27秒前
14999应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
共享精神应助科研通管家采纳,获得30
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
H_C发布了新的文献求助10
31秒前
48秒前
行走发布了新的文献求助10
49秒前
古炮完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
LYegoist完成签到,获得积分10
2分钟前
香蕉觅云应助H_C采纳,获得10
2分钟前
GingerF应助幽默酸奶采纳,获得10
3分钟前
4分钟前
YueLongZ发布了新的文献求助10
4分钟前
YueLongZ完成签到,获得积分10
4分钟前
GingerF应助niuzyang采纳,获得10
4分钟前
5分钟前
5分钟前
6分钟前
思源应助科研通管家采纳,获得30
6分钟前
littleboykk完成签到 ,获得积分10
6分钟前
7分钟前
ldjldj_2004完成签到 ,获得积分10
7分钟前
8分钟前
科研通AI2S应助liu采纳,获得10
8分钟前
liu完成签到,获得积分20
8分钟前
8分钟前
liu发布了新的文献求助10
8分钟前
8分钟前
不瞌睡应助liu采纳,获得10
8分钟前
阿符家的骡完成签到 ,获得积分10
8分钟前
bryceeluo完成签到,获得积分10
9分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919967
求助须知:如何正确求助?哪些是违规求助? 3464953
关于积分的说明 10935417
捐赠科研通 3193263
什么是DOI,文献DOI怎么找? 1764559
邀请新用户注册赠送积分活动 854963
科研通“疑难数据库(出版商)”最低求助积分说明 794541