Interpretable Analysis of the Viscosity of Digital Oil Using a Combination of Molecular Dynamics Simulation and Machine Learning

粘度 分子动力学 动力学(音乐) 计算机科学 人工智能 生物系统 机器学习 统计物理学 材料科学 化学 心理学 计算化学 物理 复合材料 生物 教育学
作者
Yunjun Zhang,Haoming Li,Yunfeng Mao,Zhongyi Zhang,Guan Wenlong,Zhenghao Wu,Xingying Lan,Chunming Xu,Tianhang Zhou
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:13 (3): 881-881
标识
DOI:10.3390/pr13030881
摘要

Although heavy oil remains a crucial energy source, its high viscosity makes its utilization challenging. We have performed an interpretable analysis of the relationship between the molecular structure of digital oil and its viscosity using molecular dynamics simulations combined with machine learning. In this study, we developed three “digital oils” to represent light, medium, and heavy oils in consideration of their composition and molecular structure. Using molecular dynamics (MD) simulations, we calculated the density, self-diffusion coefficient, and viscosity of these digital oils at various temperatures (323–453 K). The accuracy of the simulation results was demonstrated by their good fit to the experimental data. We further explored the correlation between interaction energy and viscosity. As interaction energy increased, molecular attraction strengthened, resulting in greater friction between molecules and a higher viscosity of the digital oil. Cluster analysis revealed that, compared with the other two oils, the heavy oil contained rod-shaped molecular aggregates in greater quantity and larger clusters. Additionally, we computed the radial distribution functions of the SARA (saturates, aromatics, resins, and asphaltenes) components; among molecular pairs, aromatics and resins showed the largest interaction energy and were the most tightly bound, contributing to increased viscosity. To more effectively predict the viscosity of digital oils, we integrated four machine learning (ML) techniques: linear regression, random forest, extra trees, and gradient boosting. Post-hoc analysis coupled with SHapley Additive exPlanations (SHAP) was applied to interpret how macroscopic and microscopic features influence the viscosity and to identify the contributions of individual molecules. This work presents a novel and efficient method for estimating the viscosity of digital oils by combining MD simulations with ML approaches, offering a valuable tool for quick and cost-effective analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇雅琴完成签到 ,获得积分10
1秒前
自然衣完成签到,获得积分10
1秒前
南星完成签到,获得积分10
2秒前
哈哈酱发布了新的文献求助10
2秒前
简单完成签到,获得积分10
3秒前
5秒前
淡淡的一手完成签到,获得积分20
6秒前
SYLH应助Nancy采纳,获得20
7秒前
ffffff完成签到,获得积分10
7秒前
wzyttxs完成签到,获得积分20
7秒前
觅夏发布了新的文献求助10
8秒前
8秒前
xxx完成签到 ,获得积分10
8秒前
8秒前
8秒前
卫宫完成签到,获得积分10
9秒前
样子发布了新的文献求助10
10秒前
快乐书琴发布了新的文献求助10
11秒前
飞跃发布了新的文献求助10
11秒前
11秒前
冷傲路灯完成签到,获得积分10
11秒前
11秒前
依依发布了新的文献求助10
11秒前
qqqqqqy完成签到,获得积分10
12秒前
清宁亦无拘完成签到 ,获得积分10
12秒前
跳跃碧灵发布了新的文献求助30
12秒前
12秒前
JamesPei应助yingjie采纳,获得10
12秒前
木棉完成签到,获得积分10
12秒前
缓慢荔枝完成签到,获得积分10
13秒前
爱学习的马邓邓完成签到 ,获得积分10
13秒前
懵懂的海露完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
小二郎应助5552222采纳,获得10
14秒前
14秒前
123发布了新的文献求助10
14秒前
Lucas应助高山流水采纳,获得10
15秒前
幽默白晴完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4025388
求助须知:如何正确求助?哪些是违规求助? 3565158
关于积分的说明 11348564
捐赠科研通 3296332
什么是DOI,文献DOI怎么找? 1815609
邀请新用户注册赠送积分活动 890172
科研通“疑难数据库(出版商)”最低求助积分说明 813320