DAM: Degradation-Aware Model for Ultrasound Image Quality Assessment

计算机科学 图像质量 降级(电信) 质量(理念) 质量评定 计算机视觉 图像(数学) 人工智能 可靠性工程 评价方法 工程类 电信 认识论 哲学
作者
Tuo Liu,Xuan Zhang,Xiaoxun Ma,Shuang Chen,Xuejuan Wang,Ping Zhou,Yang Chen,Guangquan Zhou,Faqin Lv
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (11): 8233-8245
标识
DOI:10.1109/jbhi.2025.3572459
摘要

One of the core challenges in ultrasound image quality assessment (IQA) is the entanglement of semantic content and quality-related information, such as blurring and shadows. Insufficient attention to the latter can easily lead to biased IQA results. Furthermore, fine-grained quality inconsistencies, i.e., subtle variations in ultrasound images that can impact quality interpretations, may further complicate the IQA tasks. To address these challenges, we propose a novel degradation-aware model (DAM) for the ultrasound IQA, which effectively perceives various and subtle variations of quality patterns, accurately assessing the quality of ultrasound images. The advanced degradation-derived augmentation (DDA) in DAM incorporates degradations that clinicians may focus on during IQA into the synthesis of appearance changes, promoting the disentanglement of quality-related representations from semantic contents. Subsequently, we present fine-grained degradation learning (FGDL), which encourages distinctions between image versions with diminishing quality inconsistencies, boosting the awareness of quality nuances from easy to hard for better ultrasound IQA performance. A universal boundary acquisition operator (UBAO) is also developed to suppress interferences from redundant information, achieving the standardization of ultrasound images from various devices. Extensive experimental results on an in-house ultrasound dataset demonstrate that DAM outperforms 14 baseline methods, achieving a PLCC of 0.760 and an SROCC of 0.766. The code can be available at this URL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助倔强毛驴侠采纳,获得10
1秒前
iiimingtian完成签到,获得积分10
1秒前
单薄映易完成签到 ,获得积分10
1秒前
1秒前
科研通AI6应助HaonanZhang采纳,获得10
1秒前
ning完成签到 ,获得积分10
2秒前
李健的小迷弟应助念姬采纳,获得10
3秒前
FashionBoy应助温暖白枫采纳,获得10
4秒前
Garnieta完成签到,获得积分10
5秒前
刻苦楼房发布了新的文献求助10
5秒前
复杂的含烟完成签到,获得积分10
5秒前
6秒前
NexusExplorer应助xdd0924采纳,获得10
6秒前
yuyu完成签到,获得积分10
6秒前
852应助无风采纳,获得10
7秒前
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
寒冷又晴完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
听听关注了科研通微信公众号
14秒前
14秒前
妥妥酱完成签到,获得积分10
15秒前
寒冷又晴发布了新的文献求助10
16秒前
gfbh完成签到,获得积分10
16秒前
16秒前
英姑应助炫羽采纳,获得10
16秒前
善学以致用应助李李李采纳,获得10
17秒前
17秒前
18秒前
18秒前
咸鱼发布了新的文献求助10
18秒前
18秒前
Robin发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599210
求助须知:如何正确求助?哪些是违规求助? 4684834
关于积分的说明 14836315
捐赠科研通 4667097
什么是DOI,文献DOI怎么找? 2537817
邀请新用户注册赠送积分活动 1505284
关于科研通互助平台的介绍 1470764