亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Primal-Dual Approach to Constrained Markov Decision Processes with Applications to Queue Scheduling and Inventory Management

计算机科学 马尔可夫决策过程 对偶(语法数字) 数学优化 调度(生产过程) 运筹学 排队 马尔可夫链 马尔可夫过程 数学 机器学习 计算机网络 统计 文学类 艺术
作者
Yi Chen,Jing Dong,Zhaoran Wang,Chuheng Zhang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2022.03736
摘要

In many operations management problems, we need to make decisions sequentially to minimize the cost, satisfying certain constraints. One modeling approach to such problems is the constrained Markov decision process (CMDP). In this work, we develop a data-driven primal-dual algorithm to solve CMDPs. Our approach alternatively applies regularized policy iteration to improve the policy and subgradient ascent to maintain the constraints. Under mild regularity conditions, we show that the algorithm converges at rate [Formula: see text], where T is the number of iterations, for both the discounted and long-run average cost formulations. Our algorithm can be easily combined with advanced deep learning techniques to deal with complex large-scale problems with the additional benefit of straightforward convergence analysis. When the CMDP has a weakly coupled structure, our approach can further reduce the computational complexity through an embedded decomposition. We apply the algorithm to two operations management problems: multiclass queue scheduling and multiproduct inventory management. Numerical experiments demonstrate that our algorithm, when combined with appropriate value function approximations, generates policies that achieve superior performance compared with state-of-the-art heuristics. This paper was accepted by Baris Ata, stochastic models and simulation. Funding: Y. Chen was supported by the Hong Kong Research Grants Council, Early Career Scheme Fund [Grant 26508924], and partially supported by a grant from the National Natural Science Foundation of China [Grant 72495125]. J. Dong was supported by the National Science Foundation [Grant 1944209]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.03736 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尤里有气完成签到,获得积分10
13秒前
Jenny发布了新的文献求助10
29秒前
Jenny完成签到,获得积分10
54秒前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
2分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
hui发布了新的文献求助30
3分钟前
3分钟前
研友_VZG7GZ应助sy采纳,获得10
4分钟前
xiaofeixia完成签到 ,获得积分10
4分钟前
wada3n完成签到,获得积分10
4分钟前
4分钟前
我很好完成签到 ,获得积分10
5分钟前
bkagyin应助中原第一深情采纳,获得10
5分钟前
elsa622完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
情怀应助RC采纳,获得10
6分钟前
6分钟前
红火完成签到 ,获得积分10
6分钟前
7分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
浔初先生完成签到,获得积分10
7分钟前
胖小羊完成签到 ,获得积分10
8分钟前
8分钟前
RC发布了新的文献求助10
8分钟前
8分钟前
8分钟前
自律发布了新的文献求助10
8分钟前
纯真的柔发布了新的文献求助10
8分钟前
李健应助纯真的柔采纳,获得10
8分钟前
BowieHuang应助科研通管家采纳,获得10
9分钟前
BowieHuang应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
菜鸟学习完成签到 ,获得积分10
9分钟前
BowieHuang应助精明一寡采纳,获得10
9分钟前
BowieHuang应助a379896033采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633344
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723