Research on emotion recognition using sparse EEG channels and cross-subject modeling based on CNN-KAN-F2CA model

人工智能 计算机科学 特征提取 模式识别(心理学) 算法
作者
Fan Xiong,Mengzhao Fan,Yang Xu,Chenxiao Wang,Jinli Zhou
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:20 (5): e0322583-e0322583 被引量:2
标识
DOI:10.1371/journal.pone.0322583
摘要

Emotion recognition plays a significant role in artificial intelligence and human-computer interaction. Electroencephalography (EEG) signals, due to their ability to directly reflect brain activity, have become an essential tool in emotion recognition research. However, the low dimensionality of sparse EEG channel data presents a key challenge in extracting effective features. This paper proposes a sparse channel EEG-based emotion recognition method using the CNN-KAN- F2CA network to address the challenges of limited feature extraction and cross-subject variability in emotion recognition. Through a feature mapping strategy, this method maps features such as Differential Entropy (DE), Power Spectral Density (PSD), and Emotion Valence Index (EVI) - Asymmetry Index (ASI) to pseudo-RGB images, effectively integrating both frequency-domain and spatial information from sparse channels, providing multi-dimensional input for CNN feature extraction. By combining the KAN module with a fast Fourier transform-based F2CA attention mechanism, the model can effectively fuse frequency-domain and spatial features for accurate classification of complex emotional signals. Experimental results show that the CNN-KAN- F2CA model performs comparably to multi-channel models while only using four EEG channels. Through training based on short-time segments, the model effectively reduces the impact of individual differences, significantly improving generalization ability in cross-subject emotion recognition tasks. Extensive experiments on the SEED and DEAP datasets demonstrate the proposed method’s superior performance in emotion classification tasks. In the merged dataset experiments, the accuracy of the SEED three-class task reached 97.985%, while the accuracy for the DEAP four-class task was 91.718%. In the subject-dependent experiment, the average accuracy for the SEED three-class task was 97.45%, and for the DEAP four-class task, it was 89.16%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
进击的PhD应助ZYP采纳,获得10
1秒前
Owen应助无私的发箍采纳,获得10
1秒前
LI发布了新的文献求助10
1秒前
七里香完成签到 ,获得积分10
1秒前
黄酮发布了新的文献求助20
2秒前
libiqing77完成签到,获得积分10
2秒前
纳尼完成签到,获得积分10
2秒前
3秒前
六一发布了新的文献求助10
3秒前
5秒前
灌水大王完成签到,获得积分10
5秒前
6秒前
7秒前
阔达雁发布了新的文献求助20
8秒前
9秒前
等待的秋双完成签到,获得积分10
9秒前
小杜吃不饱完成签到 ,获得积分20
10秒前
10秒前
Cxinny发布了新的文献求助10
11秒前
哈哈完成签到,获得积分10
11秒前
柠檬发布了新的文献求助10
13秒前
漫漫发布了新的文献求助10
13秒前
14秒前
上官若男应助11111采纳,获得10
15秒前
烦恼得得得完成签到,获得积分10
15秒前
小宇完成签到 ,获得积分10
15秒前
16秒前
17秒前
Jasper应助Labubububu采纳,获得10
18秒前
今后应助小甜采纳,获得10
18秒前
jackten发布了新的文献求助10
19秒前
张宝慧的狗狗完成签到,获得积分20
19秒前
19秒前
19秒前
Ava应助漫漫采纳,获得10
20秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
无花果应助小杜吃不饱采纳,获得30
22秒前
机器狗发布了新的文献求助10
24秒前
李健的小迷弟应助xym采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643332
求助须知:如何正确求助?哪些是违规求助? 4761047
关于积分的说明 15020601
捐赠科研通 4801687
什么是DOI,文献DOI怎么找? 2566980
邀请新用户注册赠送积分活动 1524786
关于科研通互助平台的介绍 1484372