AIoptamer: Artificial Intelligence-Driven Aptamer Optimization Pipeline for Targeted Therapeutics in Healthcare

适体 指数富集配体系统进化 计算生物学 计算机科学 管道(软件) 核糖开关 人工智能 合理设计 核糖核酸 机器学习 化学 纳米技术 生物 非编码RNA 生物化学 遗传学 基因 材料科学 程序设计语言
作者
T. K. Gupta,Priyanka Sharma,Sheeba Malik,Pradeep Pant
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
标识
DOI:10.1021/acs.molpharmaceut.5c00343
摘要

Aptamers are short, single-stranded DNA or RNA molecules known for their high specificity and affinity toward target biomolecules, making them powerful tools in drug discovery, diagnostics, and biosensing. However, conventional aptamer selection methods such as SELEX (Systematic Evolution of Ligands by EXponential Enrichment) are often labor-intensive, time-consuming, and resource-demanding. To overcome these limitations, we introduce a novel AI-driven aptamer optimization pipeline (AIoptamer: AI-driven optimization of aptamers) that integrates artificial intelligence with advanced classical computational approaches to accelerate aptamer discovery and design. The workflow begins with a known aptamer-host complex and systematically generates all possible aptamer sequence variants to target the same host. These variants are then screened using AI-based models that rank them based on sequence features and predicted binding affinity. Top candidates undergo structural modeling through CHIMERA_NA, an in-house mutagenesis tool designed to perform structural mutations in nucleic acids. The modeled structures are further evaluated using PredPRBA, a deep learning-based scoring function tailored for RNA-protein binding affinity prediction and PDA-Pred, a machine learning based model for predicting DNA-protein binding affinity. The highest-ranking aptamer-host complexes are then refined through molecular dynamics (MD) simulations to assess structural stability and interaction strength at the atomic level. Our pipeline demonstrates effectiveness across both RNA and DNA aptamer complexes, offering a generalized and robust framework for aptamer optimization. By combining AI-powered prediction with conventional computational techniques, our method advances the rational design of aptamers and significantly reduces reliance on traditional experimental trial-and-error strategies, making aptamer optimization faster, scalable and more efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
那时的纳什完成签到,获得积分10
2秒前
4秒前
4秒前
三水发布了新的文献求助10
4秒前
4秒前
三点水的源完成签到 ,获得积分10
7秒前
宁燕发布了新的文献求助30
8秒前
不会游泳的鱼完成签到,获得积分10
8秒前
852应助Zone采纳,获得10
8秒前
10秒前
小马发布了新的文献求助10
11秒前
在水一方应助小吉利采纳,获得20
11秒前
13秒前
22秒前
22秒前
石中酒完成签到 ,获得积分10
24秒前
24秒前
Zone发布了新的文献求助10
25秒前
27秒前
29秒前
29秒前
30秒前
酷波er应助科研通管家采纳,获得50
30秒前
COSMAO应助科研通管家采纳,获得10
31秒前
Owen应助科研通管家采纳,获得10
31秒前
Zone完成签到,获得积分10
31秒前
mingzheng完成签到,获得积分10
32秒前
yyywwwddd333完成签到,获得积分10
32秒前
33秒前
8787完成签到,获得积分20
35秒前
鹏1989发布了新的文献求助10
35秒前
所所应助cs采纳,获得10
35秒前
doctor2023完成签到,获得积分10
36秒前
张婷婷完成签到,获得积分20
36秒前
39秒前
45秒前
47秒前
追寻书雁完成签到 ,获得积分10
48秒前
若邻完成签到,获得积分10
49秒前
cryjslong完成签到,获得积分10
52秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170941
求助须知:如何正确求助?哪些是违规求助? 3706504
关于积分的说明 11694721
捐赠科研通 3392377
什么是DOI,文献DOI怎么找? 1860673
邀请新用户注册赠送积分活动 920499
科研通“疑难数据库(出版商)”最低求助积分说明 832732