亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Aided Intelligent Monitoring of Multivariate miRNA Biomarkers Using Bipolar Self-powered Sensors

计算机科学 人工智能 多元统计 小RNA 机器学习 纳米技术 材料科学 生物 生物化学 基因
作者
Jing Xu,Xinqi Luo,Hanxiao Chen,Bin Guo,Zhenlong Wang,Fu Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (9): 8812-8825 被引量:21
标识
DOI:10.1021/acsnano.4c16423
摘要

Breast cancer has become the most prevalent form of cancer among women on a global scale. The early and timely diagnosis of breast cancer is of the utmost importance for improving the survival rate of patients with this disease. The occurrence of breast cancer is typically accompanied by the dysregulation of multiple microRNA (miRNA) expression profiles. Consequently, simultaneous detection of multiple miRNAs is vital for the early and accurate diagnosis of breast cancer. In this study, a bipolar self-powered sensor was developed for the simultaneous detection of miRNA-451 and miRNA-145 breast cancer biomarkers based on the specific catalytic properties of enzymes. Selenides with a microporous hollow cubic structure were designed and prepared, which can markedly enhance the enzyme load and activity, as well as detection sensitivity, due to their extensive surface area and three-dimensional porous channel. The designed bipolar self-powered sensor platform is integrated into the commercial chip, and the signal is presented in the smartphone interface, thereby enabling real-time and continuous monitoring. Furthermore, machine learning was utilized to predict miRNA detection, which encompasses numerous stages, including data collection, feature extraction, model training, and validation. In comparison to the limited sensing efficiency of self-powered biosensors driven by enzyme biofuel cells, our bipolar self-powered sensor achieved simultaneous quantitative analysis of multiple miRNA targets, thereby providing a robust tool for a more comprehensive understanding of miRNA function and its association with cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
23秒前
28秒前
Omni发布了新的文献求助10
28秒前
36秒前
畅快甜瓜发布了新的文献求助10
42秒前
45秒前
47秒前
56秒前
56秒前
56秒前
56秒前
56秒前
56秒前
56秒前
56秒前
56秒前
内向的绿发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Xixicccccccc发布了新的文献求助10
1分钟前
1分钟前
畅快甜瓜发布了新的文献求助10
1分钟前
zjh发布了新的文献求助10
1分钟前
华仔应助畅快甜瓜采纳,获得10
1分钟前
Xixicccccccc发布了新的文献求助10
1分钟前
1分钟前
1分钟前
eeevaxxx完成签到 ,获得积分10
1分钟前
zjh完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6.1应助内向的绿采纳,获得10
2分钟前
2分钟前
2分钟前
IIII发布了新的文献求助10
2分钟前
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
科研通AI6.1应助Xixicccccccc采纳,获得10
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732139
求助须知:如何正确求助?哪些是违规求助? 5336882
关于积分的说明 15322005
捐赠科研通 4877849
什么是DOI,文献DOI怎么找? 2620672
邀请新用户注册赠送积分活动 1569937
关于科研通互助平台的介绍 1526507