Machine Learning-Aided Intelligent Monitoring of Multivariate miRNA Biomarkers Using Bipolar Self-powered Sensors

计算机科学 人工智能 多元统计 小RNA 机器学习 纳米技术 材料科学 生物 生物化学 基因
作者
Jing Xu,Xinqi Luo,Hanxiao Chen,Bin Guo,Zhenlong Wang,Fu Wang
出处
期刊:ACS Nano [American Chemical Society]
被引量:6
标识
DOI:10.1021/acsnano.4c16423
摘要

Breast cancer has become the most prevalent form of cancer among women on a global scale. The early and timely diagnosis of breast cancer is of the utmost importance for improving the survival rate of patients with this disease. The occurrence of breast cancer is typically accompanied by the dysregulation of multiple microRNA (miRNA) expression profiles. Consequently, simultaneous detection of multiple miRNAs is vital for the early and accurate diagnosis of breast cancer. In this study, a bipolar self-powered sensor was developed for the simultaneous detection of miRNA-451 and miRNA-145 breast cancer biomarkers based on the specific catalytic properties of enzymes. Selenides with a microporous hollow cubic structure were designed and prepared, which can markedly enhance the enzyme load and activity, as well as detection sensitivity, due to their extensive surface area and three-dimensional porous channel. The designed bipolar self-powered sensor platform is integrated into the commercial chip, and the signal is presented in the smartphone interface, thereby enabling real-time and continuous monitoring. Furthermore, machine learning was utilized to predict miRNA detection, which encompasses numerous stages, including data collection, feature extraction, model training, and validation. In comparison to the limited sensing efficiency of self-powered biosensors driven by enzyme biofuel cells, our bipolar self-powered sensor achieved simultaneous quantitative analysis of multiple miRNA targets, thereby providing a robust tool for a more comprehensive understanding of miRNA function and its association with cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
S月小小完成签到,获得积分10
4秒前
lucky完成签到,获得积分10
4秒前
ding应助科研通管家采纳,获得10
5秒前
Evelyn应助科研通管家采纳,获得20
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
空儒完成签到 ,获得积分10
7秒前
小蘑菇应助淡淡梦容采纳,获得10
15秒前
16秒前
段欣怡完成签到,获得积分10
18秒前
20秒前
21秒前
123完成签到 ,获得积分10
24秒前
CA发布了新的文献求助10
26秒前
berry完成签到,获得积分10
31秒前
追寻夜香完成签到 ,获得积分10
36秒前
小王完成签到,获得积分10
36秒前
37秒前
专注向松完成签到 ,获得积分10
39秒前
45秒前
善学以致用应助zjcbk985采纳,获得10
46秒前
47秒前
cao_bq完成签到,获得积分10
49秒前
小吴同学来啦完成签到,获得积分10
51秒前
一只羊发布了新的文献求助100
51秒前
程容纬发布了新的文献求助10
51秒前
moriaty发布了新的文献求助30
52秒前
在水一方应助康斯坦丁采纳,获得10
56秒前
糊涂的麦片完成签到,获得积分10
56秒前
小周同学完成签到 ,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4767684
求助须知:如何正确求助?哪些是违规求助? 4104663
关于积分的说明 12697409
捐赠科研通 3822480
什么是DOI,文献DOI怎么找? 2109679
邀请新用户注册赠送积分活动 1134192
关于科研通互助平台的介绍 1015112