Learnable Distribution Calibration for Few-Shot Class-Incremental Learning

人工智能 校准 计算机科学 弹丸 班级(哲学) 一次性 模式识别(心理学) 计算机视觉 数学 统计 工程类 机械工程 化学 有机化学
作者
Binghao Liu,Boyu Yang,Lingxi Xie,Ren Wang,Qi Tian,Qixiang Ye
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (10): 12699-12706 被引量:10
标识
DOI:10.1109/tpami.2023.3273291
摘要

Few-shot class-incremental learning (FSCIL) faces the challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, to systematically solve these two challenges using a unified framework. LDC is built upon a parameterized calibration unit (PCU), which initializes biased distributions for all classes based on classifier vectors (memory-free) and a single covariance matrix. The covariance matrix is shared by all classes, so that the memory costs are fixed. During base training, PCU is endowed with the ability to calibrate biased distributions by recurrently updating sampled features under supervision of real distributions. During incremental learning, PCU recovers distributions for old classes to avoid 'forgetting', as well as estimating distributions and augmenting samples for new classes to alleviate 'over-fitting' caused by the biased distributions of few-shot samples. LDC is theoretically plausible by formatting a variational inference procedure. It improves FSCIL's flexibility as the training procedure requires no class similarity priori. Experiments on CUB200, CIFAR100, and mini-ImageNet datasets show that LDC respectively outperforms the state-of-the-arts by 4.64%, 1.98%, and 3.97%. LDC's effectiveness is also validated on few-shot learning scenarios. The code is available at https://github.com/Bibikiller/LDC .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助yeyongchang_hit采纳,获得10
2秒前
英姑应助飞来燕雀三只采纳,获得10
3秒前
鄢懋卿应助Tyler采纳,获得10
3秒前
布布完成签到,获得积分10
3秒前
这斯和休完成签到,获得积分10
4秒前
4秒前
5秒前
bob发布了新的文献求助10
5秒前
tdtk完成签到,获得积分10
5秒前
猫宁完成签到,获得积分10
6秒前
6秒前
6秒前
热情积极完成签到,获得积分10
6秒前
8秒前
8秒前
猫宁发布了新的文献求助10
9秒前
9秒前
彭于晏应助rr采纳,获得10
10秒前
孟伟完成签到,获得积分10
10秒前
tdtk发布了新的文献求助10
10秒前
夏之茗完成签到,获得积分10
10秒前
Nowind完成签到,获得积分10
10秒前
无奈的代珊完成签到 ,获得积分10
12秒前
12秒前
actor2006完成签到,获得积分10
12秒前
13秒前
路途发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
研友_VZG7GZ应助布布采纳,获得10
16秒前
makbaka发布了新的文献求助10
17秒前
畅快箴完成签到,获得积分10
17秒前
17秒前
18秒前
闪闪的乐蕊完成签到,获得积分10
18秒前
研友_VZG7GZ应助liuyue采纳,获得10
18秒前
18秒前
专注狗发布了新的文献求助10
18秒前
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787625
求助须知:如何正确求助?哪些是违规求助? 3333227
关于积分的说明 10260438
捐赠科研通 3048867
什么是DOI,文献DOI怎么找? 1673295
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338