Prior-Guided Contrastive Image Compression for Underwater Machine Vision

计算机科学 水下 人工智能 特征(语言学) 冗余(工程) 编码器 计算机视觉 特征提取 机器视觉 模式识别(心理学) 语言学 哲学 海洋学 地质学 操作系统
作者
Zhengkai Fang,Liquan Shen,Mengyao Li,Zhengyong Wang,Yanliang Jin
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2950-2961 被引量:8
标识
DOI:10.1109/tcsvt.2022.3229296
摘要

Machine analysis of underwater images is essential to most underwater applications. However, both the limitation of communication bandwidth and underwater degradation bring much difficulty to accurate machine recognition at the end system. Few existing underwater compression methods consider unique underwater prior knowledge to better serve for machine vision under low bit-rates. To address this problem, we propose a novel underwater image compression framework for machines, which utilizes underwater priors to contrastively enhance degraded features by contrastive learning and efficiently compress machine-friendly features under low bit-rates. A dataset is built to provide positive and negative samples for contrastive learning based on machine analysis performance. At the encoder side, a feature extractor and a feature encoder are employed to extract machine-related features and compress them into compact representations. To alleviate the effect of underwater degradation on machine vision, a prior-guided contrastive feature enhancement module is proposed to learn more machine-friendly features based on positive and negative samples from our dataset. Then a feature refinement block is designed to remove channel-wise redundancy and focus spatial-wise importance based on high similarity of machine-related features and characteristics of underwater images. More compact representations are obtained without degrading analysis performance under low bit-rates. At the decoder side, both machine-friendly features and image are reconstructed to support different types of analysis tasks. Experimental results demonstrate the superiority of our framework in machine vision tasks compared with traditional compression methods and learned-based methods. Besides, our method still preserves basic capability of human perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
schen发布了新的文献求助10
刚刚
zzy完成签到,获得积分20
1秒前
yxr0315完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
白秋秋发布了新的文献求助10
1秒前
闪闪幼南完成签到,获得积分10
1秒前
二马三乡完成签到 ,获得积分10
1秒前
wanci应助cc采纳,获得10
2秒前
小摩尔发布了新的文献求助10
2秒前
2秒前
蘑蘑菇菇完成签到,获得积分20
2秒前
LiZeHua发布了新的文献求助10
2秒前
又又发布了新的文献求助10
2秒前
3秒前
星辰大海应助钦川采纳,获得10
3秒前
3秒前
乐乐应助炒栗子采纳,获得30
3秒前
3秒前
不问归期的风完成签到,获得积分0
3秒前
3秒前
奔跑的青霉素完成签到 ,获得积分10
3秒前
yxr0315发布了新的文献求助10
4秒前
洛伦佐Lorenzo完成签到,获得积分10
4秒前
哈喽小雪发布了新的文献求助10
4秒前
Lucas应助啊七飞采纳,获得10
4秒前
Chenglong发布了新的文献求助10
4秒前
5秒前
5秒前
淡淡大山完成签到,获得积分10
6秒前
Holly12345应助榆术山支子采纳,获得10
6秒前
英俊的铭应助王雨采纳,获得10
6秒前
yzp111发布了新的文献求助10
7秒前
7秒前
wulalala发布了新的文献求助20
7秒前
7秒前
Bin_Go关注了科研通微信公众号
8秒前
Orange应助ChiariRay采纳,获得10
9秒前
顾矜应助哈喽小雪采纳,获得10
9秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1500
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3981923
求助须知:如何正确求助?哪些是违规求助? 3525640
关于积分的说明 11227738
捐赠科研通 3263494
什么是DOI,文献DOI怎么找? 1801502
邀请新用户注册赠送积分活动 879889
科研通“疑难数据库(出版商)”最低求助积分说明 807608