A Two-Stage Mutual Fusion Network for Multispectral and Panchromatic Image Classification

全色胶片 计算机科学 多光谱图像 特征(语言学) 块(置换群论) 人工智能 频道(广播) 模式识别(心理学) 图像融合 特征提取 融合 上下文图像分类 计算机视觉 图像(数学) 数学 电信 语言学 哲学 几何学
作者
Yinuo Liao,Hao Zhu,Licheng Jiao,Xiaotong Li,Na Li,Kenan Sun,Xu Tang,Biao Hou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:1
标识
DOI:10.1109/tgrs.2022.3222458
摘要

With the rapid development of remote sensing technology, satellites can easily obtain multispectral (MS) and panchromatic (PAN) images. How to mine the essence and peculiarity of the MS and PAN images and utilize their complementary to improve classification performance is still a challenge. This paper designs a two-stage mutual fusion network (TSMF-Net) for MS and PAN image classification. The network can be divided into two stages: data fusion and feature fusion. In the data fusion stage, we propose an adaptive twin intensity-hue-saturation (ATIHS) strategy. It not only aligns the size and channels of the MS and PAN images by a novel q-Split operation, but also introduces an adaptive soft-average mask to reduce the differences between replacement components, effectively mitigating spectral distortion and paving the way for the next stage. In the feature fusion stage, we propose a feature graft block (FG-Block) in which we introduce triplet loss and design an interlaced channel addition (ICA) module. Under the supervision of triplet loss, the FG-Block separates and hauls each branch’s essential and peculiar features. With the help of the ICA module, it can effectively graft the essential feature between branches and retain the peculiar feature of each branch, improving the utilization and discrimination of features. Finally, composed of the ATIHS, FG-Blocks, and output layers, our TSMF-Net is proven to improve the accuracy of the remote sensing classification task. The experimental results on multiple datasets verify the effectiveness of our proposed algorithms. Our code is available at: https://github.com/liaoyinuo/TSMF-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
灵巧幻露发布了新的文献求助10
3秒前
脑洞疼应助廿一雨采纳,获得10
4秒前
4秒前
红毛兔完成签到,获得积分10
8秒前
qingjiu完成签到 ,获得积分10
9秒前
9秒前
sagacity发布了新的文献求助10
10秒前
13秒前
牧辰发布了新的文献求助10
13秒前
15秒前
wen发布了新的文献求助10
19秒前
斯文败类应助wen采纳,获得10
25秒前
32秒前
袁奇点完成签到,获得积分10
33秒前
410的大平层有213个杀手完成签到 ,获得积分10
33秒前
36秒前
gong9456完成签到,获得积分10
37秒前
王启航发布了新的文献求助10
37秒前
38秒前
隐形曼青应助XYY采纳,获得10
40秒前
画个饼充饥完成签到,获得积分10
43秒前
火箭筒发布了新的文献求助10
45秒前
喜悦莛完成签到,获得积分10
45秒前
coicell发布了新的文献求助10
50秒前
50秒前
52秒前
lizishu应助王启航采纳,获得10
53秒前
幽默海燕完成签到 ,获得积分10
54秒前
思雅发布了新的文献求助10
54秒前
54秒前
蓝天应助Ash采纳,获得10
55秒前
56秒前
56秒前
牧辰完成签到,获得积分10
1分钟前
Laray完成签到 ,获得积分10
1分钟前
硫海遗爵给硫海遗爵的求助进行了留言
1分钟前
酷波er应助Bonnienuit采纳,获得10
1分钟前
1分钟前
大模型应助王启航采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842331
求助须知:如何正确求助?哪些是违规求助? 6171989
关于积分的说明 15609122
捐赠科研通 4959585
什么是DOI,文献DOI怎么找? 2673836
邀请新用户注册赠送积分活动 1618720
关于科研通互助平台的介绍 1573861