Multifunctional dendrimer@nanoceria engineered GelMA hydrogel accelerates bone regeneration through orchestrated cellular responses

自愈水凝胶 细胞生物学 间充质干细胞 化学 氧化应激 再生(生物学) 活性氧 干细胞 生物物理学 材料科学 生物化学 生物 高分子化学
作者
Amal George Kurian,Nandin Mandakhbayar,Rajendra Singh,Jung-Hwan Lee,Gangshi Jin,Hae-Won Kim
出处
期刊:Materials today bio [Elsevier]
卷期号:20: 100664-100664
标识
DOI:10.1016/j.mtbio.2023.100664
摘要

Bone defects in patients entail the microenvironment that needs to boost the functions of stem cells (e.g., proliferation, migration, and differentiation) while alleviating severe inflammation induced by high oxidative stress. Biomaterials can help to shift the microenvironment by regulating these multiple events. Here we report multifunctional composite hydrogels composed of photo-responsive Gelatin Methacryloyl (GelMA) and dendrimer (G3)-functionalized nanoceria (G3@nCe). Incorporation of G3@nCe into GelMA could enhance the mechanical properties of hydrogels and their enzymatic ability to clear reactive oxygen species (ROS). The G3@nCe/GelMA hydrogels supported the focal adhesion of mesenchymal stem cells (MSCs) and further increased their proliferation and migration ability (vs. pristine GelMA and nCe/GelMA). Moreover, the osteogenic differentiation of MSCs was significantly stimulated upon the G3@nCe/GelMA hydrogels. Importantly, the capacity of G3@nCe/GelMA hydrogels to scavenge extracellular ROS enabled MSCs to survive against H2O2-induced high oxidative stress. Transcriptome analysis by RNA sequencing identified the genes upregulated and the signalling pathways activated by G3@nCe/GelMA that are associated with cell growth, migration, osteogenesis, and ROS-metabolic process. When implanted subcutaneously, the hydrogels exhibited excellent tissue integration with a sign of material degradation while the inflammatory response was minimal. Furthermore, G3@nCe/GelMA hydrogels demonstrated effective bone regeneration capacity in a rat critical-sized bone defect model, possibly due to an orchestrated capacity of enhancing cell proliferation, motility and osteogenesis while alleviating oxidative stress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hygge完成签到,获得积分10
1秒前
自信依瑶完成签到,获得积分10
1秒前
4秒前
4秒前
yxy999完成签到,获得积分10
4秒前
5秒前
情怀应助旺仔不甜采纳,获得10
5秒前
自信依瑶发布了新的文献求助10
5秒前
6秒前
SteveRogers完成签到,获得积分10
6秒前
7秒前
8秒前
yhw123123完成签到,获得积分20
8秒前
珂珂发布了新的文献求助10
9秒前
SteveRogers发布了新的文献求助150
10秒前
12秒前
喜悦彤发布了新的文献求助30
13秒前
鲁路修完成签到,获得积分10
13秒前
14秒前
15秒前
17秒前
重要墨镜发布了新的文献求助10
18秒前
yhw123123发布了新的文献求助30
19秒前
南信第一深情完成签到,获得积分20
19秒前
20秒前
20秒前
科里斯皮尔应助jeremyher采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
T1206182639发布了新的文献求助10
23秒前
拼死拼活完成签到 ,获得积分10
23秒前
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Pressing the Fight: Print, Propaganda, and the Cold War 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
The Three Stars Each: The Astrolabes and Related Texts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2470891
求助须知:如何正确求助?哪些是违规求助? 2137639
关于积分的说明 5446802
捐赠科研通 1861606
什么是DOI,文献DOI怎么找? 925834
版权声明 562721
科研通“疑难数据库(出版商)”最低求助积分说明 495246