Multifunctional dendrimer@nanoceria engineered GelMA hydrogel accelerates bone regeneration through orchestrated cellular responses

自愈水凝胶 细胞生物学 间充质干细胞 化学 氧化应激 再生(生物学) 活性氧 干细胞 材料科学 生物物理学 生物化学 生物 高分子化学
作者
Amal George Kurian,Nandin Mandakhbayar,Rajendra K. Singh,Jung‐Hwan Lee,Gangshi Jin,Hae‐Won Kim
出处
期刊:Materials today bio [Elsevier BV]
卷期号:20: 100664-100664 被引量:15
标识
DOI:10.1016/j.mtbio.2023.100664
摘要

Bone defects in patients entail the microenvironment that needs to boost the functions of stem cells (e.g., proliferation, migration, and differentiation) while alleviating severe inflammation induced by high oxidative stress. Biomaterials can help to shift the microenvironment by regulating these multiple events. Here we report multifunctional composite hydrogels composed of photo-responsive Gelatin Methacryloyl (GelMA) and dendrimer (G3)-functionalized nanoceria (G3@nCe). Incorporation of G3@nCe into GelMA could enhance the mechanical properties of hydrogels and their enzymatic ability to clear reactive oxygen species (ROS). The G3@nCe/GelMA hydrogels supported the focal adhesion of mesenchymal stem cells (MSCs) and further increased their proliferation and migration ability (vs. pristine GelMA and nCe/GelMA). Moreover, the osteogenic differentiation of MSCs was significantly stimulated upon the G3@nCe/GelMA hydrogels. Importantly, the capacity of G3@nCe/GelMA hydrogels to scavenge extracellular ROS enabled MSCs to survive against H2O2-induced high oxidative stress. Transcriptome analysis by RNA sequencing identified the genes upregulated and the signalling pathways activated by G3@nCe/GelMA that are associated with cell growth, migration, osteogenesis, and ROS-metabolic process. When implanted subcutaneously, the hydrogels exhibited excellent tissue integration with a sign of material degradation while the inflammatory response was minimal. Furthermore, G3@nCe/GelMA hydrogels demonstrated effective bone regeneration capacity in a rat critical-sized bone defect model, possibly due to an orchestrated capacity of enhancing cell proliferation, motility and osteogenesis while alleviating oxidative stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布鲁爱思完成签到,获得积分10
1秒前
luoshikun发布了新的文献求助10
2秒前
2秒前
觞酌关注了科研通微信公众号
3秒前
研友_8WMxKn发布了新的文献求助10
3秒前
3秒前
yiyi完成签到,获得积分20
3秒前
Orange应助成功采纳,获得10
3秒前
4秒前
Akim应助XX采纳,获得10
4秒前
kellen完成签到,获得积分10
4秒前
Hhd发布了新的文献求助10
5秒前
daidai完成签到,获得积分10
7秒前
Holland应助23采纳,获得10
7秒前
FashionBoy应助CATH采纳,获得10
8秒前
8秒前
9秒前
Joy发布了新的文献求助10
9秒前
9秒前
自行设置完成签到,获得积分10
9秒前
ababab发布了新的文献求助10
9秒前
卷王完成签到,获得积分10
9秒前
9秒前
天天快乐应助kilig采纳,获得10
10秒前
aifd完成签到,获得积分20
11秒前
小酒窝周周完成签到 ,获得积分10
11秒前
魏逸茜发布了新的文献求助10
12秒前
脑洞疼应助Willer采纳,获得10
12秒前
自行设置发布了新的文献求助10
12秒前
海的呼唤发布了新的文献求助10
13秒前
北风应助心神依然采纳,获得10
15秒前
冷艳的寒天完成签到,获得积分10
16秒前
英俊的铭应助青旋采纳,获得10
16秒前
香蕉觅云应助奋斗的怀曼采纳,获得10
17秒前
领导范儿应助yiyi采纳,获得10
17秒前
谨慎鞅完成签到,获得积分10
18秒前
迷你的隶完成签到,获得积分10
18秒前
19秒前
彩色映雁完成签到 ,获得积分10
19秒前
饵丝拌辣酱完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783663
求助须知:如何正确求助?哪些是违规求助? 3328848
关于积分的说明 10238905
捐赠科研通 3044253
什么是DOI,文献DOI怎么找? 1670861
邀请新用户注册赠送积分活动 799939
科研通“疑难数据库(出版商)”最低求助积分说明 759171