亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

U-Shape Transformer for Underwater Image Enhancement

水下 计算机科学 人工智能 计算机视觉 RGB颜色模型 分割 变压器 图像质量 色空间 图像分割 模式识别(心理学) 地理 图像(数学) 工程类 电压 电气工程 考古
作者
Lintao Peng,Chunli Zhu,Liheng Bian
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3066-3079 被引量:501
标识
DOI:10.1109/tip.2023.3276332
摘要

The light absorption and scattering of underwater impurities lead to poor underwater imaging quality. The existing data-driven based underwater image enhancement (UIE) techniques suffer from the lack of a large-scale dataset containing various underwater scenes and high-fidelity reference images. Besides, the inconsistent attenuation in different color channels and space areas is not fully considered for boosted enhancement. In this work, we built a large scale underwater image (LSUI) dataset, which covers more abundant underwater scenes and better visual quality reference images than existing underwater datasets. The dataset contains 4279 real-world underwater image groups, in which each raw image's clear reference images, semantic segmentation map and medium transmission map are paired correspondingly. We also reported an U-shape Transformer network where the transformer model is for the first time introduced to the UIE task. The U-shape Transformer is integrated with a channel-wise multi-scale feature fusion transformer (CMSFFT) module and a spatial-wise global feature modeling transformer (SGFMT) module specially designed for UIE task, which reinforce the network's attention to the color channels and space areas with more serious attenuation. Meanwhile, in order to further improve the contrast and saturation, a novel loss function combining RGB, LAB and LCH color spaces is designed following the human vision principle. The extensive experiments on available datasets validate the state-of-the-art performance of the reported technique with more than 2dB superiority. The dataset and demo code are available at https://bianlab.github.io/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
现代CC完成签到 ,获得积分10
6秒前
科研通AI5应助漫漫采纳,获得10
7秒前
展锋发布了新的文献求助10
8秒前
陶醉元冬完成签到,获得积分10
9秒前
bkagyin应助爱听歌凤灵采纳,获得10
9秒前
英姑应助123采纳,获得10
12秒前
斯文败类应助奥黛丽悟空采纳,获得10
16秒前
18秒前
19秒前
22秒前
26秒前
桐桐应助111采纳,获得10
31秒前
32秒前
爱听歌凤灵完成签到,获得积分10
34秒前
今日发布了新的文献求助10
37秒前
Lucas应助七色光采纳,获得10
1分钟前
充电宝应助彭蓬采纳,获得10
1分钟前
Splaink完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助花骨头采纳,获得10
1分钟前
今日完成签到,获得积分10
1分钟前
蕊蕊应助奥黛丽悟空采纳,获得10
1分钟前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
Owen应助xuan采纳,获得30
1分钟前
七色光发布了新的文献求助10
1分钟前
科研通AI5应助杭州007采纳,获得30
1分钟前
1分钟前
科研通AI5应助111采纳,获得10
1分钟前
杭州007完成签到,获得积分10
1分钟前
volcano发布了新的文献求助10
1分钟前
九月亦星完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xuan发布了新的文献求助30
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220743
求助须知:如何正确求助?哪些是违规求助? 4394021
关于积分的说明 13680050
捐赠科研通 4256994
什么是DOI,文献DOI怎么找? 2335881
邀请新用户注册赠送积分活动 1333500
关于科研通互助平台的介绍 1287918