Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs

人工智能 基因组选择 支持向量机 随机森林 特征选择 机器学习 梯度升压 计算机科学 弹性网正则化 特质 选择(遗传算法) 最佳线性无偏预测 生物 遗传学 基因 单核苷酸多态性 基因型 程序设计语言
作者
Tao Xiang,Tao Li,Jielin Li,Xin Li,Jia Wang
出处
期刊:The FASEB Journal [Wiley]
卷期号:37 (6) 被引量:8
标识
DOI:10.1096/fj.202300245r
摘要

Genomic prediction, which is based on solving linear mixed-model (LMM) equations, is the most popular method for predicting breeding values or phenotypic performance for economic traits in livestock. With the need to further improve the performance of genomic prediction, nonlinear methods have been considered as an alternative and promising approach. The excellent ability to predict phenotypes in animal husbandry has been demonstrated by machine learning (ML) approaches, which have been rapidly developed. To investigate the feasibility and reliability of implementing genomic prediction using nonlinear models, the performances of genomic predictions for pig productive traits using the linear genomic selection model and nonlinear machine learning models were compared. Then, to reduce the high-dimensional features of genome sequence data, different machine learning algorithms, including the random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost) and convolutional neural network (CNN) algorithms, were used to perform genomic feature selection as well as genomic prediction on reduced feature genome data. All of the analyses were processed on two real pig datasets: the published PIC pig dataset and a dataset comprising data from a national pig nucleus herd in Chifeng, North China. Overall, the accuracies of predicted phenotypic performance for traits T1, T2, T3 and T5 in the PIC dataset and average daily gain (ADG) in the Chifeng dataset were higher using the ML methods than the LMM method, while those for trait T4 in the PIC dataset and total number of piglets born (TNB) in the Chifeng dataset were slightly lower using the ML methods than the LMM method. Among all the different ML algorithms, SVM was the most appropriate for genomic prediction. For the genomic feature selection experiment, the most stable and most accurate results across different algorithms were achieved using XGBoost in combination with the SVM algorithm. Through feature selection, the number of genomic markers can be reduced to 1 in 20, while the predictive performance on some traits can even be improved compared to using the full genome data. Finally, we developed a new tool that can be used to execute combined XGBoost and SVM algorithms to realize genomic feature selection and phenotypic prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
carl发布了新的文献求助10
1秒前
2秒前
偶然发现的西柚完成签到 ,获得积分10
2秒前
W29完成签到 ,获得积分10
5秒前
BEN完成签到,获得积分10
5秒前
APPLE完成签到 ,获得积分10
5秒前
断章发布了新的文献求助10
7秒前
内向尔安发布了新的文献求助10
7秒前
7秒前
wanci应助carl采纳,获得10
9秒前
是小越啊完成签到,获得积分10
9秒前
Ss完成签到,获得积分10
9秒前
che完成签到,获得积分10
12秒前
13秒前
12完成签到,获得积分10
13秒前
15秒前
张文博完成签到,获得积分10
17秒前
请问发布了新的文献求助10
19秒前
张文博发布了新的文献求助10
22秒前
serpant发布了新的文献求助10
23秒前
李爱国应助断章采纳,获得10
31秒前
serpant完成签到,获得积分10
32秒前
wy.he应助爱学习的小美采纳,获得10
33秒前
或无情完成签到 ,获得积分10
34秒前
香菜应助科研通管家采纳,获得10
34秒前
共享精神应助科研通管家采纳,获得10
35秒前
wanci应助科研通管家采纳,获得10
35秒前
Orange应助科研通管家采纳,获得10
35秒前
科研小民工应助张文博采纳,获得200
35秒前
玩命的小虾米完成签到 ,获得积分10
35秒前
栗子呢呢呢完成签到 ,获得积分10
37秒前
席冥完成签到,获得积分10
38秒前
平常的毛豆应助是小越啊采纳,获得30
38秒前
可爱的函函应助是小越啊采纳,获得30
38秒前
安安完成签到 ,获得积分10
38秒前
nowfitness完成签到,获得积分10
39秒前
ddddddd完成签到 ,获得积分10
40秒前
爆炸boom完成签到 ,获得积分10
40秒前
笨蛋美女完成签到 ,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323559
关于积分的说明 10214983
捐赠科研通 3038761
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798276
科研通“疑难数据库(出版商)”最低求助积分说明 758315