Prior Knowledge-guided Triple-Domain Transformer-GAN for Direct PET Reconstruction from Low-Count Sinograms

计算机科学 变压器 Pet成像 正电子发射断层摄影术 人工智能 计算机视觉 核医学 医学 电气工程 工程类 电压
作者
Jiaqi Cui,Pinxian Zeng,Xinyi Zeng,Yuanyuan Xu,Peng Wang,Jiliu Zhou,Yan Wang,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tmi.2024.3413832
摘要

To obtain high-quality positron emission tomography (PET) images while minimizing radiation exposure, numerous methods have been dedicated to acquiring standard-count PET (SPET) from low-count PET (LPET). However, current methods have failed to take full advantage of the different emphasized information from multiple domains, i.e., the sinogram, image, and frequency domains, resulting in the loss of crucial details. Meanwhile, they overlook the unique inner-structure of the sinograms, thereby failing to fully capture its structural characteristics and relationships. To alleviate these problems, in this paper, we proposed a prior knowledge-guided transformer-GAN that unites triple domains of sinogram, image, and frequency to directly reconstruct SPET images from LPET sinograms, namely PK-TriDo. Our PK-TriDo consists of a Sinogram Inner-Structure-based Denoising Transformer (SISD-Former) to denoise the input LPET sinogram, a Frequency-adapted Image Reconstruction Transformer (FaIR-Former) to reconstruct high-quality SPET images from the denoised sinograms guided by the image domain prior knowledge, and an Adversarial Network (AdvNet) to further enhance the reconstruction quality via adversarial training. Specifically tailored for the PET imaging mechanism, we injected a sinogram embedding module that partitions the sinograms by rows and columns to obtain 1D sequences of angles and distances to faithfully preserve the inner-structure of the sinograms. Moreover, to mitigate high-frequency distortions and enhance reconstruction details, we integrated global-local frequency parsers (GLFPs) into FaIR-Former to calibrate the distributions and proportions of different frequency bands, thus compelling the network to preserve high-frequency details. Evaluations on three datasets with different dose levels and imaging scenarios demonstrated that our PK-TriDo outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助jucy采纳,获得10
1秒前
科研通AI5应助坤舆探骊者采纳,获得10
2秒前
冷板凳发布了新的文献求助10
2秒前
peach发布了新的文献求助10
3秒前
3秒前
嵩嵩应助haha111采纳,获得10
3秒前
爱悠悠完成签到 ,获得积分10
4秒前
ccc完成签到,获得积分10
4秒前
5秒前
FU完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助80
6秒前
7秒前
ares-gxd发布了新的文献求助100
7秒前
suwan发布了新的文献求助10
8秒前
Wendy完成签到,获得积分10
8秒前
YZ完成签到 ,获得积分10
9秒前
东郭寄灵发布了新的文献求助10
10秒前
Akim应助艾尚淑采纳,获得10
10秒前
隐形曼青应助荷包蛋采纳,获得10
10秒前
研友_VZG7GZ应助Liooo采纳,获得10
11秒前
852应助mojomars采纳,获得10
12秒前
13秒前
13秒前
zjuroc完成签到,获得积分10
15秒前
爱笑的含烟完成签到,获得积分10
16秒前
咩咩应助陈十一yyyyy采纳,获得10
16秒前
热心子轩应助dddmk采纳,获得10
16秒前
17秒前
科目三应助遇见星星了吗采纳,获得10
17秒前
18秒前
19秒前
多边形发布了新的文献求助30
20秒前
20秒前
科研通AI6应助JOJO采纳,获得10
20秒前
脑洞疼应助zjuroc采纳,获得50
21秒前
vivelejrlee发布了新的文献求助20
21秒前
走着走着就散了完成签到,获得积分10
22秒前
荷包蛋发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575108
求助须知:如何正确求助?哪些是违规求助? 3994761
关于积分的说明 12366426
捐赠科研通 3668170
什么是DOI,文献DOI怎么找? 2021757
邀请新用户注册赠送积分活动 1055779
科研通“疑难数据库(出版商)”最低求助积分说明 943116