已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving the transferability of adversarial examples through black-box feature attacks

可转让性 黑匣子 对抗制 特征(语言学) 计算机科学 人工智能 模式识别(心理学) 机器学习 语言学 哲学 罗伊特
作者
Maoyuan Wang,Jinwei Wang,Bin Ma,Xiangyang Luo
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:595: 127863-127863 被引量:4
标识
DOI:10.1016/j.neucom.2024.127863
摘要

Deep neural networks (DNNs) are vulnerable and susceptible to imperceptible perturbations. Adversarial examples become more and more popular. Black-box attacks are considered to be the most realistic scenario. Currently, transfer-based black-box attacks show excellent performance. However, transfer-based black-box attacks all require an agent model of the attack, which we call the source model. This leads to the existing transfer-based attacks limited by the features focused on the source model, which creates a bottleneck in improving the transferability of adversarial examples. In order to solve this problem, we propose an attack that mainly targets features that are insensitive to the source model, which we call the black-box feature attack. Specifically, we categorize the features of the image into white-box features and black-box features. The white-box features are source model-sensitive features and the black-box features are source model insensitive features. White-box features are only specific to the source model, while black-box features are more generalized for unknown models. By destroying the image white-box features, the fitted image is obtained and the model intermediate layer feature map is extracted. Afterward, the fitting gradient is found for the fitted images with different fitting degrees. We construct loss functions based on the obtained fitting gradients and feature maps to guide the attacks to better destroy the black-box features of the images. Extensive experiments demonstrate that our methods have higher transferability compared to state-of-the-art methods, which achieve more than 90% of transferability under the normal model. It is also significantly better than other methods on adversarially trained models. Even in the white-box setting, our attack has the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加湿器发布了新的文献求助10
刚刚
daisy应助unowhoiam采纳,获得20
1秒前
dt发布了新的文献求助10
2秒前
乌苏完成签到 ,获得积分10
3秒前
沉静酸奶完成签到,获得积分10
4秒前
英俊的铭应助王路飞采纳,获得10
6秒前
星空棒棒糖完成签到,获得积分10
7秒前
hhh完成签到 ,获得积分10
9秒前
9秒前
10秒前
小樊同学发布了新的文献求助10
13秒前
15秒前
丁元英完成签到,获得积分10
18秒前
科研通AI5应助zhangfengyan采纳,获得10
19秒前
20秒前
鱼儿发布了新的文献求助30
20秒前
草木发布了新的文献求助10
21秒前
完美大神完成签到 ,获得积分10
21秒前
夏紊完成签到 ,获得积分10
22秒前
25秒前
酷波er应助草木采纳,获得10
29秒前
浪客完成签到 ,获得积分10
29秒前
31秒前
sdfsdf发布了新的文献求助10
31秒前
大模型应助HonamC采纳,获得10
34秒前
35秒前
memory发布了新的文献求助10
36秒前
光盘行动发布了新的文献求助20
36秒前
深情安青应助鱼儿采纳,获得10
37秒前
那兰完成签到,获得积分10
38秒前
40秒前
yaorunhua发布了新的文献求助10
40秒前
科研通AI5应助苏苏苏采纳,获得10
41秒前
那兰发布了新的文献求助10
41秒前
42秒前
42秒前
zhj发布了新的文献求助20
43秒前
43秒前
英姑应助鲸鱼采纳,获得10
44秒前
HonamC发布了新的文献求助10
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792319
求助须知:如何正确求助?哪些是违规求助? 3336507
关于积分的说明 10281242
捐赠科研通 3053236
什么是DOI,文献DOI怎么找? 1675541
邀请新用户注册赠送积分活动 803492
科研通“疑难数据库(出版商)”最低求助积分说明 761436