神经科学
海马结构
帕尔瓦布明
突触后电位
人口
中间神经元
生物
兴奋性突触后电位
阈下传导
节奏
动力学(音乐)
抑制性突触后电位
物理
电压
人口学
社会学
受体
晶体管
量子力学
生物化学
声学
作者
Yi-Chieh Huang,Hui-Ching Chen,Yu-Ting Lin,Szu-Ting Lin,Qinsi Zheng,Ahmed S. Abdelfattah,Luke D. Lavis,Eric R. Schreiter,Bei‐Jung Lin,Tsai‐Wen Chen
出处
期刊:Neuron
[Cell Press]
日期:2024-07-01
卷期号:112 (15): 2600-2613.e5
标识
DOI:10.1016/j.neuron.2024.05.015
摘要
Brain oscillations are crucial for perception, memory, and behavior. Parvalbumin-expressing (PV) interneurons are critical for these oscillations, but their population dynamics remain unclear. Using voltage imaging, we simultaneously recorded membrane potentials in up to 26 PV interneurons in vivo during hippocampal ripple oscillations in mice. We found that PV cells generate ripple-frequency rhythms by forming highly dynamic cell assemblies. These assemblies exhibit rapid and significant changes from cycle to cycle, varying greatly in both size and membership. Importantly, this variability is not just random spiking failures of individual neurons. Rather, the activities of other PV cells contain significant information about whether a PV cell spikes or not in a given cycle. This coordination persists without network oscillations, and it exists in subthreshold potentials even when the cells are not spiking. Dynamic assemblies of interneurons may provide a new mechanism to modulate postsynaptic dynamics and impact cognitive functions flexibly and rapidly.
科研通智能强力驱动
Strongly Powered by AbleSci AI