Application of artificial intelligence in turbomachinery aerodynamics: progresses and challenges

涡轮机械 空气动力学 计算机科学 系统工程 人工智能 航空航天工程 工程类
作者
Zhengping Zou,Pengcheng Xu,Yiming Chen,Lichao Yao,Chao Fu
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:57 (8) 被引量:4
标识
DOI:10.1007/s10462-024-10867-3
摘要

Abstract Turbomachinery plays a vital role in energy conversion systems, with aerodynamic issues being integral to its entire lifecycle, spanning the period of design, validation, and maintenance. Conventionally, the reliance on skilled aerodynamic engineers has been pivotal in the successful development of turbomachines. However, in the current era of burgeoning artificial intelligence (AI) technology, researchers are increasingly turning to AI to replace human expertise and decision-making in these aerodynamic issues and to solve previously intractable aerodynamic problems. This paper presents a systematic literature review of the latest advancements in applying AI to turbomachinery aerodynamics, encompassing the design, validation, and maintenance of compressors and turbines. It underscores how AI is revolutionizing the research paradigm of turbomachinery aerodynamics. AI’s powerful learning capability facilitates more precise and convenient aerodynamic analyses and inspires innovative aerodynamic design ideas that go beyond the capabilities of classical design techniques. Additionally, AI’s autonomous decision-making capability can be employed for aerodynamic optimization and active flow control of turbomachines, generating optimal aerodynamic solutions and complex control strategies that surpass human brains. As a main contribution, we provide a detailed exposition of the future intelligent turbomachinery research and development (R &D) system, along with highlighting potential challenges such as physics embedding, interactive 3D design optimization, and real-time prognoses. It is anticipated that harnessing AI’s full potential will lead to a comprehensive AI-based turbomachinery R &D system in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助纯情的尔槐采纳,获得10
刚刚
小镇青年完成签到,获得积分10
2秒前
3秒前
4秒前
5秒前
6秒前
7秒前
Iwan完成签到,获得积分10
8秒前
啦啦啦发布了新的文献求助10
9秒前
葡萄树发布了新的文献求助10
9秒前
anbiii发布了新的文献求助10
10秒前
10秒前
英姑应助花杨梅采纳,获得10
11秒前
12秒前
Iwan发布了新的文献求助10
13秒前
14秒前
17秒前
卓Celina发布了新的文献求助10
17秒前
萨克麦迪发布了新的文献求助10
19秒前
Vivian发布了新的文献求助10
20秒前
SciGPT应助壮观听白采纳,获得10
21秒前
星星收藏家完成签到,获得积分10
22秒前
赘婿应助llll采纳,获得10
24秒前
GG发布了新的文献求助10
27秒前
29秒前
隐形曼青应助科研通管家采纳,获得50
29秒前
甜甜玫瑰应助科研通管家采纳,获得10
30秒前
今后应助科研通管家采纳,获得10
30秒前
桐桐应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
bkagyin应助科研通管家采纳,获得10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
甜甜玫瑰应助科研通管家采纳,获得10
30秒前
chen完成签到,获得积分10
30秒前
30秒前
江九言完成签到 ,获得积分10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814240
求助须知:如何正确求助?哪些是违规求助? 3358474
关于积分的说明 10394980
捐赠科研通 3075704
什么是DOI,文献DOI怎么找? 1689492
邀请新用户注册赠送积分活动 812987
科研通“疑难数据库(出版商)”最低求助积分说明 767416