已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient and Accurate Semi-automatic Neuron Tracing with Extended Reality

计算机科学 计算机图形学(图像) 追踪 虚拟现实 可视化 数据可视化 人工智能 光线追踪(物理) 计算机视觉 程序设计语言 物理 量子力学
作者
Jie Chen,Zexin Yuan,Jiaqi Xi,Ziqin Gao,Ying Li,Xiaoqiang Zhu,Yun Shi,Frank Guan,Yimin Wang
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tvcg.2024.3456197
摘要

Neuron tracing, alternately referred to as neuron reconstruction, is the procedure for extracting the digital representation of the three-dimensional neuronal morphology from stacks of microscopic images. Achieving accurate neuron tracing is critical for profiling the neuroanatomical structure at single-cell level and analyzing the neuronal circuits and projections at whole-brain scale. However, the process often demands substantial human involvement and represents a nontrivial task. Conventional solutions towards neuron tracing often contend with challenges such as non-intuitive user interactions, suboptimal data generation throughput, and ambiguous visualization. In this paper, we introduce a novel method that leverages the power of extended reality (XR) for intuitive and progressive semi-automatic neuron tracing in real time. In our method, we have defined a set of interactors for controllable and efficient interactions for neuron tracing in an immersive environment. We have also developed a GPU-accelerated automatic tracing algorithm that can generate updated neuron reconstruction in real time. In addition, we have built a visualizer for fast and improved visual experience, particularly when working with both volumetric images and 3D objects. Our method has been successfully implemented with one virtual reality (VR) headset and one augmented reality (AR) headset with satisfying results achieved. We also conducted two user studies and proved the effectiveness of the interactors and the efficiency of our method in comparison with other approaches for neuron tracing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunday完成签到 ,获得积分10
1秒前
王雨辰发布了新的文献求助10
1秒前
Zhuzhu完成签到 ,获得积分10
2秒前
不学习的牛蛙完成签到 ,获得积分10
2秒前
fwda1000完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
小六九完成签到 ,获得积分10
5秒前
顺心靖雁完成签到,获得积分10
6秒前
xylor完成签到,获得积分10
6秒前
谷子完成签到 ,获得积分10
8秒前
8秒前
McbxM发布了新的文献求助10
8秒前
9秒前
10秒前
嗯嗯完成签到 ,获得积分10
11秒前
11秒前
zhangzhenwen1204完成签到 ,获得积分10
11秒前
GUAN发布了新的文献求助10
12秒前
Axel完成签到,获得积分10
12秒前
善学以致用应助yangdan采纳,获得10
13秒前
FODCOC完成签到,获得积分10
13秒前
善学以致用应助zai采纳,获得10
14秒前
诸乘风完成签到 ,获得积分10
14秒前
自由飞阳完成签到,获得积分10
14秒前
仁爱水之完成签到 ,获得积分10
15秒前
玖月完成签到 ,获得积分10
15秒前
lby完成签到 ,获得积分10
17秒前
遇上就这样吧完成签到,获得积分0
17秒前
AnJaShua完成签到 ,获得积分10
19秒前
小c完成签到 ,获得积分10
19秒前
步步完成签到 ,获得积分10
19秒前
喵喵完成签到 ,获得积分10
20秒前
兜里没糖了完成签到 ,获得积分10
20秒前
22秒前
吕半鬼完成签到,获得积分0
23秒前
呼呼呼完成签到,获得积分10
24秒前
Ljy完成签到 ,获得积分10
24秒前
zai发布了新的文献求助10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788117
求助须知:如何正确求助?哪些是违规求助? 3333604
关于积分的说明 10262585
捐赠科研通 3049416
什么是DOI,文献DOI怎么找? 1673545
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477