Use of Machine Learning for Automated Classification of Sand Type

人工智能 模式识别(心理学) 粒子(生态学) 鉴定(生物学) 决策树 形状分析(程序分析) 计算机科学 粒径 图像(数学) 机器学习 数学 地质学 生物 静态分析 海洋学 古生物学 植物 程序设计语言
作者
Linzhu Li,Magued Iskander
出处
期刊:Transportation Research Record [SAGE Publishing]
标识
DOI:10.1177/03611981241257408
摘要

This study demonstrates the feasibility of utilizing machine learning (ML) for routine identification of sand particles. Identifying different types of sand is necessary for various geotechnical exploration projects because understanding the specific sand type plays an important role in estimating the physical and mechanical properties of the soil. To accomplish this, dynamic image analysis was employed to generate a substantial volume of sand particle images. Individual size and shape descriptors were automatically extracted from each particle image. The analysis involved use of 40,000 binary particle images representing 20 different sand types, and a corresponding six size and four shape descriptors for each particle (400,000 parameters). Six ML models were trained and tested. The work demonstrates that using size and shape features the models efficiently identified up to 49% of individual sand particles. However, when clusters of particles were considered in conjunction with a voting algorithm, classification accuracy significantly improved to 90%. Among the ML models studied, neural networks performed the best, while decision tree exhibited the lowest accuracy. Finally, the use of size consistently outperformed shape as a classification parameter but combining size and shape parameters yielded superior results across all sands and classifiers. These findings suggest that ML holds much promise for automating sand classification using ordinary images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫の傲娇发布了新的文献求助10
1秒前
科研通AI5应助DXXX采纳,获得10
1秒前
科研通AI2S应助勤奋白凝采纳,获得10
2秒前
Ning发布了新的文献求助10
2秒前
领导范儿应助qiu采纳,获得10
3秒前
4秒前
5秒前
5秒前
6秒前
6秒前
陈皮完成签到,获得积分20
7秒前
7秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
andrele应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得30
9秒前
华仔应助科研通管家采纳,获得30
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
coolkid应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
FashionBoy应助科研通管家采纳,获得30
9秒前
9秒前
肖英松发布了新的文献求助10
9秒前
bai发布了新的文献求助10
10秒前
11秒前
11秒前
qq发布了新的文献求助10
11秒前
木言发布了新的文献求助10
13秒前
香蕉觅云应助大橘子采纳,获得10
14秒前
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847411
求助须知:如何正确求助?哪些是违规求助? 3389982
关于积分的说明 10559880
捐赠科研通 3110410
什么是DOI,文献DOI怎么找? 1714299
邀请新用户注册赠送积分活动 825205
科研通“疑难数据库(出版商)”最低求助积分说明 775339