Carbonation depth prediction and parameter influential analysis of recycled concrete buildings

碳化作用 随机森林 机器学习 计算机科学 环境科学 岩土工程 人工智能 工艺工程 材料科学 工程类 复合材料
作者
Dianchao Wang,Qihang Tan,Yiren Wang,Gaoyang Liu,Zheng Lu,Chongqiang Zhu,Bochao Sun
出处
期刊:Journal of CO2 utilization [Elsevier]
卷期号:85: 102877-102877 被引量:13
标识
DOI:10.1016/j.jcou.2024.102877
摘要

With the development of the circular economy and low-carbon society, the large-scale application of construction solid waste in buildings, such as recycled concrete, is becoming imperative. Accurately predicting the carbonation depth of recycled concrete is of great significance. Quantitatively analyzing the impact of each parameter on carbonation and elucidating the relationships between these parameters present challenges in predicting the carbonation of recycled concrete. In this study, different machine learning models and prediction equation models were applied and compared to predict the carbonation depth of 576 datasets associated with recycled concrete. The machine learning models used include Automation Machine Learning (AutoML), LightGBM, CatBoost, Neural Networks, Extra Trees, Random Forest, XGBoost, KNN (K-Nearest Neighbor). The results indicate that the machine learning method shows higher accuracy than the traditional equation, the AutoML model exhibits the best prediction accuracy among the investigated machine learning models, and carbonation test results further verified the favorable carbonation depth prediction effects of AutoML model. Furthermore, SHAP (Shapley Additive Explanations) was utilized to quantitatively analyze and explain the prediction results. The results demonstrate that carbonation time and the water to cement (W/C) ratio of recycled concrete have the most significant impact on the carbonation depth of recycled concrete buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
英俊寻真完成签到,获得积分10
3秒前
4秒前
小鱼发布了新的文献求助10
5秒前
Vespa发布了新的文献求助10
5秒前
5秒前
啦啦啦啦完成签到,获得积分10
6秒前
7秒前
9秒前
sunc发布了新的文献求助30
10秒前
秀丽嘉熙完成签到,获得积分10
10秒前
大福发布了新的文献求助10
12秒前
爱学习发布了新的文献求助10
14秒前
14秒前
15秒前
Ava应助XIEQ采纳,获得10
15秒前
穆若发布了新的文献求助20
17秒前
19秒前
19秒前
cindy完成签到 ,获得积分10
19秒前
19秒前
墨白白发布了新的文献求助10
20秒前
20秒前
文静的海完成签到,获得积分10
22秒前
22秒前
22秒前
小妍发布了新的文献求助10
23秒前
赘婿应助高贵秋柳采纳,获得10
25秒前
星辰大海应助椰青冰萃采纳,获得10
25秒前
科研通AI6应助sunc采纳,获得10
26秒前
XIEQ发布了新的文献求助10
26秒前
只争朝夕应助悦耳的翠芙采纳,获得10
29秒前
29秒前
wanci应助爱学习采纳,获得10
31秒前
31秒前
yang发布了新的文献求助10
34秒前
34秒前
1229完成签到,获得积分10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557518
求助须知:如何正确求助?哪些是违规求助? 4642631
关于积分的说明 14668588
捐赠科研通 4584033
什么是DOI,文献DOI怎么找? 2514512
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459482