光老化
幼虫
化学
乙酸乙酯
皮肤老化
真皮成纤维细胞
人体皮肤
分数(化学)
生物
皮肤病科
生物化学
医学
成纤维细胞
体外
植物
色谱法
遗传学
作者
Kyong Kim,Chae-Eun Kim,Dong-Jae Baek,Eun‐Young Park,Yoon Sin Oh
摘要
Allomyrina dichotoma larvae (ADL) is an insect type that is used ethnopharmacologically to treat various diseases; however, its use as an antiaging treatment has not been widely studied. Previously, we found that an ethyl acetate (EA) fraction derived from an ADL extract (ADLE) has a high polyphenol content and antioxidant properties. In this study, we identified the underlying molecular mechanism for the protective effect of the EA fraction against UVB-induced photodamage in vitro and ex vivo. UVB treatment increased intracellular reactive oxygen species levels and DNA damage; the latter of which was significantly decreased following cotreatment with the EA fraction. Biological markers of aging, such as p16INK4a, p21WAF1, and senescence-associated β-gal levels, were induced by UVB treatment but significantly suppressed following EA-fraction treatment. UVB-induced upregulation of matrix metalloproteinase (MMP)-1 and downregulation of COL1A1 were also reversed by EA-fraction treatment in both cells and a 3D skin model, which resulted in increased keratin and collagen deposition. Moreover, EA-fraction treatment inhibited the phosphorylation of MAPKs (p38, ERK, and JNK) and nuclear factor (NF-)-kB and decreased the levels of inflammatory cytokines in UVB-treated cells. The results indicate that an EA fraction from ADLE ameliorates UVB-induced degradation of COL1A1 by inhibiting MMP expression and inactivating the MAPK/NF-κB p65/AP-1 signaling pathway involved in this process.
科研通智能强力驱动
Strongly Powered by AbleSci AI