概化理论
概念证明
计算机科学
图像(数学)
医学
患者数据
人工智能
医学物理学
放射科
模式识别(心理学)
心理学
数据库
操作系统
发展心理学
作者
Gianluca Brugnara,Chandrakanth Jayachandran Preetha,Katerina Deike‐Hofmann,Robert Haase,Thomas Pinetz,Martha Foltyn‐Dumitru,Mustafa Ahmed Mahmutoglu,Brigitte Wildemann,Ricarda Diem,Wolfgang Wick,Alexander Radbruch,Martin Bendszus,Hagen Meredig,Aditya Rastogi,Philipp Kickingereder
出处
期刊:Radiology
[Radiological Society of North America]
日期:2024-10-16
卷期号:6 (6)
被引量:2
摘要
Artificial intelligence (AI) models often face performance drops after deployment to external datasets. This study evaluated the potential of a novel data augmentation framework based on generative adversarial networks (GANs) that creates synthetic patient image data for model training to improve model generalizability. Model development and external testing were performed for a given classification task, namely the detection of new fluid-attenuated inversion recovery lesions at MRI during longitudinal follow-up of patients with multiple sclerosis (MS). An internal dataset of 669 patients with MS (
科研通智能强力驱动
Strongly Powered by AbleSci AI