A Machine Learning Framework for Assessing Experts’ Decision Quality

计算机科学 质量(理念) 决策质量 机器学习 人工智能 决策树 管理科学 知识管理 经济 哲学 团队效能 认识论
作者
Wanxue Dong,Maytal Saar‐Tsechansky,Tomer Geva
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (7): 5696-5721 被引量:2
标识
DOI:10.1287/mnsc.2021.03357
摘要

Expert workers make non-trivial decisions with significant implications. Experts’ decision accuracy is, thus, a fundamental aspect of their judgment quality, key to both management and consumers of experts’ services. Yet, in many important settings, transparency in experts’ decision quality is rarely possible because ground truth data for evaluating the experts’ decisions is costly and available only for a limited set of decisions. Furthermore, different experts typically handle exclusive sets of decisions, and thus, prior solutions that rely on the aggregation of multiple experts’ decisions for the same instance are inapplicable. We first formulate the problem of estimating experts’ decision accuracy in this setting and then develop a machine–learning–based framework to address it. Our method effectively leverages both abundant historical data on workers’ past decisions and scarce decision instances with ground truth labels. Using both semi-synthetic data based on publicly available data sets and purposefully compiled data sets on real workers’ decisions, we conduct extensive empirical evaluations of our method’s performance relative to alternatives. The results show that our approach is superior to existing alternatives across diverse settings, including settings that involve different data domains, experts’ qualities, and amounts of ground truth data. To our knowledge, this paper is the first to posit and address the problem of estimating experts’ decision accuracies from historical data with scarce ground truth, and it is the first to offer comprehensive results for this problem setting, establishing the performances that can be achieved across settings as well as the state-of-the-art performance on which future work can build. This paper was accepted by Anindya Ghose, information systems. Funding: T. Geva acknowledges research grants from the Jeremy Coller Foundation and from the Henry Crown Institute for Business Research. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.03357 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gwj完成签到,获得积分10
刚刚
寂寞的诗云完成签到,获得积分10
刚刚
Levi李发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
ynchendt完成签到,获得积分10
2秒前
顾矜应助scl123采纳,获得10
2秒前
竹9完成签到,获得积分10
3秒前
蓝天应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得30
3秒前
田様应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
兰先生发布了新的文献求助10
3秒前
Chen发布了新的文献求助10
5秒前
科研通AI6应助violet采纳,获得10
5秒前
6秒前
温暖静柏发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
10秒前
夹心饼干完成签到,获得积分10
10秒前
elang发布了新的文献求助50
10秒前
11秒前
wangyanyan完成签到,获得积分10
11秒前
hoax发布了新的文献求助10
12秒前
12秒前
小蘑菇应助蒸馏水采纳,获得10
12秒前
13秒前
美少女壮士完成签到,获得积分10
13秒前
星苒发布了新的文献求助10
13秒前
yolo完成签到,获得积分10
14秒前
14秒前
15秒前
上官若男应助Bacian采纳,获得30
15秒前
16秒前
可爱的函函应助美好斓采纳,获得10
16秒前
柠檬发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569802
求助须知:如何正确求助?哪些是违规求助? 4654951
关于积分的说明 14710692
捐赠科研通 4596026
什么是DOI,文献DOI怎么找? 2522224
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464030