亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning Framework for Assessing Experts’ Decision Quality

计算机科学 质量(理念) 决策质量 机器学习 人工智能 决策树 管理科学 知识管理 经济 团队效能 认识论 哲学
作者
Wanxue Dong,Maytal Saar‐Tsechansky,Tomer Geva
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2021.03357
摘要

Expert workers make non-trivial decisions with significant implications. Experts’ decision accuracy is, thus, a fundamental aspect of their judgment quality, key to both management and consumers of experts’ services. Yet, in many important settings, transparency in experts’ decision quality is rarely possible because ground truth data for evaluating the experts’ decisions is costly and available only for a limited set of decisions. Furthermore, different experts typically handle exclusive sets of decisions, and thus, prior solutions that rely on the aggregation of multiple experts’ decisions for the same instance are inapplicable. We first formulate the problem of estimating experts’ decision accuracy in this setting and then develop a machine–learning–based framework to address it. Our method effectively leverages both abundant historical data on workers’ past decisions and scarce decision instances with ground truth labels. Using both semi-synthetic data based on publicly available data sets and purposefully compiled data sets on real workers’ decisions, we conduct extensive empirical evaluations of our method’s performance relative to alternatives. The results show that our approach is superior to existing alternatives across diverse settings, including settings that involve different data domains, experts’ qualities, and amounts of ground truth data. To our knowledge, this paper is the first to posit and address the problem of estimating experts’ decision accuracies from historical data with scarce ground truth, and it is the first to offer comprehensive results for this problem setting, establishing the performances that can be achieved across settings as well as the state-of-the-art performance on which future work can build. This paper was accepted by Anindya Ghose, information systems. Funding: T. Geva acknowledges research grants from the Jeremy Coller Foundation and from the Henry Crown Institute for Business Research. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.03357 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
16秒前
20秒前
坦率黑米发布了新的文献求助10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
Arturo应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
坦率黑米完成签到,获得积分10
26秒前
27秒前
Kevin发布了新的文献求助10
32秒前
32秒前
晞暝完成签到,获得积分10
34秒前
倪妮发布了新的文献求助10
35秒前
倪妮发布了新的文献求助10
35秒前
倪妮发布了新的文献求助10
35秒前
倪妮发布了新的文献求助10
35秒前
倪妮发布了新的文献求助10
37秒前
倪妮发布了新的文献求助10
37秒前
shaonianzu完成签到 ,获得积分10
40秒前
八宝啾发布了新的文献求助20
42秒前
田様应助sun采纳,获得10
59秒前
杨三多完成签到,获得积分10
1分钟前
1分钟前
sun发布了新的文献求助10
1分钟前
Hello应助Marco_hxkq采纳,获得10
1分钟前
芝士完成签到,获得积分10
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
烟花应助亭曈采纳,获得10
2分钟前
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI5应助sun采纳,获得10
2分钟前
2分钟前
sun发布了新的文献求助10
2分钟前
2分钟前
zl13332完成签到 ,获得积分10
2分钟前
2分钟前
Marco_hxkq发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952307
求助须知:如何正确求助?哪些是违规求助? 4215050
关于积分的说明 13110882
捐赠科研通 3996919
什么是DOI,文献DOI怎么找? 2187703
邀请新用户注册赠送积分活动 1202971
关于科研通互助平台的介绍 1115710