A hybrid unsupervised clustering method for predicting the risk of dental implant loss

植入 列线图 聚类分析 比例危险模型 牙种植体 医学 一致性 单变量 生存分析 多元统计 牙科 统计 计算机科学 人工智能 外科 内科学 数学
作者
Chenxi Xie,Yuzhou Li,Kehao Liu,Jiahui Liu,Jie Zeng,Nannan Huang,Sheng Yang
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:149: 105260-105260
标识
DOI:10.1016/j.jdent.2024.105260
摘要

The aim of this study was to predict the risk of dental implant loss by clustering features associated with implant survival rates. Multiple clinical features from 8513 patients who underwent single implant placement were retrospectively analysed. A hybrid method integrating unsupervised learning algorithms with survival analysis was employed for data mining. Two-step cluster, univariate Cox regression, and Kaplan‒Meier survival analyses were performed to identify the clustering features associated with implant survival rates. To predict the risk of dental implant loss, nomograms were constructed on the basis of time-stratified multivariate Cox regression. Six clusters with distinct features and prognoses were identified using two-step cluster analysis and Kaplan‒Meier survival analysis. Compared with the other clusters, only one cluster presented significantly lower implant survival rates, and six specific clustering features within this cluster were identified as high-risk factors, including age, smoking history, implant diameter, implant length, implant position, and surgical procedure. Nomograms were created to assess the impact of the six high-risk factors on implant loss for three periods: 1) 0–120 days, 2) 120–310 days, and 3) more than 310 days after implant placement. The concordance indices of the models were 0.642, 0.781, and 0.715, respectively. The hybrid unsupervised clustering method, which clusters and identifies high-risk clinical features associated with implant loss without relying on predefined labels or target variables, represents an effective approach for developing a visual model for predicting implant prognosis. However, further validation with a multimodal, multicentre, prospective cohort is needed. Visual prognosis prediction utilizing this nomogram that predicts the risk of implant loss on the basis of clustering features can assist dentists in preoperative assessments and clinical decision-making, potentially improving dental implant prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
随遇而安应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
CC1219应助科研通管家采纳,获得10
1秒前
3秒前
wlf发布了新的文献求助10
3秒前
于明玉发布了新的文献求助10
5秒前
漂亮寻云发布了新的文献求助10
6秒前
你好吗完成签到,获得积分20
8秒前
洁净衬衫发布了新的文献求助10
8秒前
10秒前
11秒前
vivre223发布了新的文献求助10
12秒前
科研通AI5应助吉吉采纳,获得10
13秒前
随意发布了新的文献求助10
15秒前
木森ab发布了新的文献求助10
15秒前
16秒前
17秒前
uyuy完成签到,获得积分20
17秒前
祝愿完成签到,获得积分10
18秒前
淡然如风完成签到 ,获得积分10
18秒前
斯文败类应助乔治哇采纳,获得10
18秒前
南风发布了新的文献求助50
20秒前
lizhiqian2024发布了新的文献求助30
21秒前
木森ab完成签到,获得积分20
22秒前
Ysusb完成签到,获得积分10
22秒前
yuzhanli发布了新的文献求助10
23秒前
欧阳发布了新的文献求助30
23秒前
24秒前
你好吗关注了科研通微信公众号
26秒前
Ava应助土豆采纳,获得30
26秒前
26秒前
今后应助祥子采纳,获得10
26秒前
26秒前
28秒前
yuzhanli完成签到,获得积分10
30秒前
乔治哇发布了新的文献求助10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791108
求助须知:如何正确求助?哪些是违规求助? 3335778
关于积分的说明 10276931
捐赠科研通 3052392
什么是DOI,文献DOI怎么找? 1675123
邀请新用户注册赠送积分活动 803106
科研通“疑难数据库(出版商)”最低求助积分说明 761076