清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Sentiment of Nurses Towards Artificial Intelligence and Resistance to Change in Healthcare Organisations: A Mixed‐Method Study

抗性(生态学) 医疗保健 心理学 感知 转化式学习 比例(比率) 定性性质 应用心理学 护理部 医学教育 知识管理 医学 计算机科学 发展心理学 政治学 物理 量子力学 神经科学 机器学习 生态学 法学 生物
作者
Shaimaa Mohamed Amin,Heba Emad El‐Gazar,Mohamed Ali Zoromba,Mona Metwally El‐Sayed,Mohamed Hussein Ramadan Atta
出处
期刊:Journal of Advanced Nursing [Wiley]
卷期号:81 (4): 2087-2098 被引量:34
标识
DOI:10.1111/jan.16435
摘要

ABSTRACT Background Research identified preliminary evidence that artificial intelligence (AI) has emerged as a transformative force in healthcare, revolutionising various aspects of healthcare delivery, from diagnostics to treatment planning. However, integrating AI into healthcare systems in Egypt is challenging, particularly concerning healthcare professionals' acceptance and adoption of these technologies. This mixed‐method study aimed to explore the sentiment of nurses at different organisational levels towards AI and resistance to change in healthcare organisations. Methods A mixed‐method design was employed, with quantitative data collected through a survey of 500 nurses using the general attitudes towards AI and resistance to change scale and qualitative data from semi‐structured interviews with 17 nurses. Quantitative data were analysed using descriptive and inferential statistics, while qualitative data were analysed thematically. Results The survey demonstrated that positive attitudes were inversely correlated with resistance behaviour and resistance to change. Additionally, perceptions of AI's usefulness, ease of use and value were strongly and positively correlated with positive attitudes and negatively correlated with negative attitudes. Moreover, the influence of colleagues' opinions, self‐efficacy for change and organisational support showed significant positive correlations with positive attitudes towards AI and negative correlations with negative attitudes. Qualitatively, nurses cited obstacles such as lack of familiarity with AI technologies, biases affecting decision‐making, technological challenges, inadequate training and fear of technology replacing human interaction. Readiness for AI integration was associated with the necessity of training and the timing of AI use. Conclusion Nurses demonstrated varied understanding of AI's applications and benefits. Some acknowledged its potential for efficiency and time‐saving, while others highlighted a need for up‐to‐date knowledge. Patient or Public Contribution No patient or public contribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的丹雪完成签到,获得积分10
4秒前
5秒前
灿烂而孤独的八戒完成签到 ,获得积分10
14秒前
25秒前
56秒前
方白秋完成签到,获得积分0
56秒前
量子星尘发布了新的文献求助10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
1分钟前
wrl2023发布了新的文献求助10
1分钟前
sqc发布了新的文献求助10
1分钟前
wrl2023完成签到,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
临兵者完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
开放青旋应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
勤奋流沙完成签到 ,获得积分10
2分钟前
朴素海亦完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
小白菜完成签到,获得积分10
3分钟前
3分钟前
袁青寒完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
TEMPO发布了新的文献求助10
4分钟前
魔术师完成签到 ,获得积分10
4分钟前
4分钟前
瞿寒完成签到,获得积分10
4分钟前
快乐的笑阳完成签到,获得积分10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210