Sentiment of Nurses Towards Artificial Intelligence and Resistance to Change in Healthcare Organisations: A Mixed‐Method Study

抗性(生态学) 医疗保健 心理学 感知 转化式学习 比例(比率) 定性性质 应用心理学 护理部 医学教育 知识管理 医学 计算机科学 发展心理学 政治学 物理 量子力学 神经科学 机器学习 生态学 法学 生物
作者
Shaimaa Mohamed Amin,Heba Emad El‐Gazar,Mohamed Ali Zoromba,Mona Metwally El‐Sayed,Mohamed Hussein Ramadan Atta
出处
期刊:Journal of Advanced Nursing [Wiley]
被引量:4
标识
DOI:10.1111/jan.16435
摘要

ABSTRACT Background Research identified preliminary evidence that artificial intelligence (AI) has emerged as a transformative force in healthcare, revolutionising various aspects of healthcare delivery, from diagnostics to treatment planning. However, integrating AI into healthcare systems in Egypt is challenging, particularly concerning healthcare professionals' acceptance and adoption of these technologies. This mixed‐method study aimed to explore the sentiment of nurses at different organisational levels towards AI and resistance to change in healthcare organisations. Methods A mixed‐method design was employed, with quantitative data collected through a survey of 500 nurses using the general attitudes towards AI and resistance to change scale and qualitative data from semi‐structured interviews with 17 nurses. Quantitative data were analysed using descriptive and inferential statistics, while qualitative data were analysed thematically. Results The survey demonstrated that positive attitudes were inversely correlated with resistance behaviour and resistance to change. Additionally, perceptions of AI's usefulness, ease of use and value were strongly and positively correlated with positive attitudes and negatively correlated with negative attitudes. Moreover, the influence of colleagues' opinions, self‐efficacy for change and organisational support showed significant positive correlations with positive attitudes towards AI and negative correlations with negative attitudes. Qualitatively, nurses cited obstacles such as lack of familiarity with AI technologies, biases affecting decision‐making, technological challenges, inadequate training and fear of technology replacing human interaction. Readiness for AI integration was associated with the necessity of training and the timing of AI use. Conclusion Nurses demonstrated varied understanding of AI's applications and benefits. Some acknowledged its potential for efficiency and time‐saving, while others highlighted a need for up‐to‐date knowledge. Patient or Public Contribution No patient or public contribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jerry完成签到,获得积分10
刚刚
1秒前
凡人完成签到 ,获得积分10
2秒前
顾矜应助端庄的碧萱采纳,获得10
2秒前
沫柠完成签到 ,获得积分10
2秒前
3秒前
桐桐应助小杨采纳,获得10
4秒前
qwe发布了新的文献求助10
8秒前
8秒前
善学以致用应助Helium采纳,获得10
9秒前
爱学习的小李完成签到 ,获得积分10
11秒前
11秒前
11秒前
Wizard发布了新的文献求助10
13秒前
銪志青年完成签到,获得积分10
14秒前
光头强完成签到,获得积分10
15秒前
李爱国应助咻咻咻采纳,获得10
16秒前
xiaoxiong发布了新的文献求助20
16秒前
大模型应助超锅采纳,获得10
17秒前
Orange应助銪志青年采纳,获得10
17秒前
忐忑的雪糕完成签到 ,获得积分10
17秒前
17秒前
qwe完成签到,获得积分10
17秒前
青青儿发布了新的文献求助10
22秒前
小杨发布了新的文献求助10
24秒前
24秒前
xiaoxiong完成签到,获得积分10
24秒前
27秒前
27秒前
xiaoxiaoz发布了新的文献求助10
28秒前
liu123发布了新的文献求助10
32秒前
科研通AI5应助kun采纳,获得10
33秒前
扶余山本发布了新的文献求助10
33秒前
谢朝邦完成签到 ,获得积分10
34秒前
科研通AI5应助yue957采纳,获得10
34秒前
tiger完成签到,获得积分10
35秒前
善良的剑通应助wangli采纳,获得10
35秒前
沐颜完成签到 ,获得积分10
35秒前
38秒前
Jasper应助liu123采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780525
求助须知:如何正确求助?哪些是违规求助? 3326007
关于积分的说明 10225002
捐赠科研通 3041057
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799019
科研通“疑难数据库(出版商)”最低求助积分说明 758667