Identifying influential nodes in complex networks based on spreading probability

计算机科学 统计物理学 复杂网络 物理 数学 组合数学
作者
Jun Ai,Tao He,Zhan Su,Lihui Shang
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:164: 112627-112627 被引量:15
标识
DOI:10.1016/j.chaos.2022.112627
摘要

The identification of node importance is a challenging topic in network science, and plays a critical role in understanding the structure and function of networks. Various centrality methods have been proposed to define the influence of nodes. However, most existing works do not directly use the node propagation capacity for measuring the importance of nodes. Moreover, those methods do not have a high enough ability to distinguish nodes with minor differences, and are not applicable to a wide range of network types. To address the issues, we first define a method to calculate the propagation capability of nodes and divide the nodes in the network into an infected source and the uninfected nodes. The propagation capability of a source node is calculated from the probability that uninfected nodes are infected by the source, either directly or indirectly. Based on measuring the propagation ability of each node in the network, we propose a novel centrality method based on node spreading probability (SPC). Empirical analysis is performed by Susceptible–Infected–Recovered (SIR) model and static attacking simulation. We use six classical networks, and five typical methods to validate SPC. The results demonstrate that our method balances the measurement of node importance in the network connectivity and propagation structure with superior ability to discriminate nodes. • Propose a centrality method from novel perspective. • Show an excellent ability to discriminate nodes. • Achieve a balance between the network’s connectivity and propagation structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luiii发布了新的文献求助10
刚刚
SYLH应助小灰灰采纳,获得10
刚刚
琪凯定理发布了新的文献求助10
1秒前
1秒前
玖文发布了新的文献求助30
2秒前
3秒前
汉堡包应助汉堡采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助ayayaya采纳,获得10
3秒前
4秒前
SciGPT应助ddz采纳,获得10
4秒前
夏天凉茶发布了新的文献求助10
4秒前
JET_Li完成签到,获得积分10
4秒前
木木完成签到,获得积分10
5秒前
慕青应助Polong采纳,获得10
5秒前
美好斓发布了新的文献求助10
5秒前
wocao发布了新的文献求助10
5秒前
清新的曼彤完成签到,获得积分10
5秒前
virgil发布了新的文献求助10
6秒前
丁sir完成签到,获得积分10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得30
6秒前
顾矜应助科研通管家采纳,获得30
6秒前
英姑应助Ivan采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
xiang发布了新的文献求助10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
liuyuh完成签到,获得积分10
7秒前
7秒前
阳和启蛰完成签到 ,获得积分10
7秒前
8秒前
8秒前
Nan完成签到,获得积分10
9秒前
搞怪唯雪完成签到,获得积分10
9秒前
小欣写写写完成签到,获得积分10
10秒前
daniel完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805892
求助须知:如何正确求助?哪些是违规求助? 3350749
关于积分的说明 10350923
捐赠科研通 3066628
什么是DOI,文献DOI怎么找? 1684048
邀请新用户注册赠送积分活动 809244
科研通“疑难数据库(出版商)”最低求助积分说明 765425