High Throughput Omnidirectional Printing of Tubular Microstructures from Elastomeric Polymers

材料科学 微尺度化学 3D打印 弹性体 制作 聚合物 表面微加工 微观结构 纳米技术 小型化 生物医学工程 复合材料 病理 数学教育 医学 替代医学 数学
作者
Chuan Liu,Scott B. Campbell,Jianzhao Li,Dawn Bannerman,Simon Pascual-Gil,Jennifer Kieda,Qinghua Wu,Peter R. Herman,Milica Radisic
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:: 2201346-2201346
标识
DOI:10.1002/adhm.202201346
摘要

Bioelastomers have been extensively used in biomedical applications due to their desirable mechanical strength, tunable properties, and chemical versatility; however, 3D printing bioelastomers into microscale structures has proven elusive. Herein, a high throughput omnidirectional printing approach via coaxial extrusion is described that fabricated perfusable elastomeric microtubes of unprecedently small inner diameter (350-550 μm) and wall thickness (40-60 μm). The versatility of this approach was shown through the printing of two different polymeric elastomers, followed by photocrosslinking and removal of the fugitive inner phase. Designed experiments were used to tune the dimensions and stiffness of the microtubes to match that of native ex vivo rat vasculature. This approach afforded the fabrication of multiple biomimetic shapes resembling cochlea and kidney glomerulus and afforded facile, high-throughput generation of perfusable structures that can be seeded with endothelial cells for biomedical applications. Post-printing laser micromachining was performed to generate numerous micro-sized holes (5-20 μm) in the tube wall to tune microstructure permeability. Importantly, for organ-on-a-chip applications, the described approach took only 3.6 minutes to print microtubes (without microholes) over an entire 96-well plate device, in contrast to comparable hole-free structures that take between 1.5 to 6.5 days to fabricate using a manual 3D stamping approach. This article is protected by copyright. All rights reserved
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
hello_25baby发布了新的文献求助30
6秒前
咔咔发布了新的文献求助30
6秒前
拨云见日完成签到,获得积分10
11秒前
王瑞华发布了新的文献求助10
12秒前
13秒前
sss完成签到 ,获得积分10
14秒前
17秒前
SUN完成签到 ,获得积分10
19秒前
Orange应助风吹玲响采纳,获得20
20秒前
20秒前
21秒前
22秒前
missr完成签到,获得积分10
22秒前
懒惰饼子发布了新的文献求助10
24秒前
英俊的铭应助王瑞华采纳,获得10
24秒前
Mortimer发布了新的文献求助50
25秒前
missr发布了新的文献求助10
26秒前
敏感丹翠发布了新的文献求助10
29秒前
咔咔完成签到,获得积分20
30秒前
SuperFAN完成签到,获得积分10
32秒前
33秒前
37秒前
在水一方应助机灵垣采纳,获得10
37秒前
38秒前
少山完成签到,获得积分10
41秒前
花生壳发布了新的文献求助10
42秒前
jh发布了新的文献求助10
45秒前
48秒前
丘比特应助老柳采纳,获得10
48秒前
49秒前
zxldylan完成签到,获得积分10
56秒前
王瑞华发布了新的文献求助10
56秒前
56秒前
57秒前
xicifish完成签到,获得积分10
57秒前
57秒前
58秒前
1分钟前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
The three stars each : the Astrolabes and related texts 550
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
Chinese-English Translation Lexicon Version 3.0 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2399725
求助须知:如何正确求助?哪些是违规求助? 2100481
关于积分的说明 5295487
捐赠科研通 1828213
什么是DOI,文献DOI怎么找? 911229
版权声明 560142
科研通“疑难数据库(出版商)”最低求助积分说明 487075