已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An ensemble machine learning model for water quality estimation in coastal area based on remote sensing imagery

浊度 环境科学 水质 估计 海湾 集成学习 遥感 计算机科学 机器学习 地理 生态学 生物 经济 考古 管理
作者
Xiaotong Zhu,Hongwei Guo,Jinhui Jeanne Huang‬‬‬‬,Shang Tian,Xu Wang,Youquan Mai
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:323: 116187-116187 被引量:56
标识
DOI:10.1016/j.jenvman.2022.116187
摘要

The accurate estimation of coastal water quality parameters (WQPs) is crucial for decision-makers to manage water resources. Although various machine learning (ML) models have been developed for coastal water quality estimation using remote sensing data, the performance of these models has significant uncertainties when applied to regional scales. To address this issue, an ensemble ML-based model was developed in this study. The ensemble ML model was applied to estimate chlorophyll-a (Chla), turbidity, and dissolved oxygen (DO) based on Sentinel-2 satellite images in Shenzhen Bay, China. The optimal input features for each WQP were selected from eight spectral bands and seven spectral indices. A local explanation strategy termed Shapley Additive Explanations (SHAP) was employed to quantify contributions of each feature to model outputs. In addition, the impacts of three climate factors on the variation of each WQP were analyzed. The results suggested that the ensemble ML models have satisfied performance for Chla (errors = 1.7%), turbidity (errors = 1.5%) and DO estimation (errors = 0.02%). Band 3 (B3) has the highest positive contribution to Chla estimation, while Band Ration Index2 (BR2) has the highest negative contribution to turbidity estimation, and Band 7 (B7) has the highest positive contribution to DO estimation. The spatial patterns of the three WQPs revealed that the water quality deterioration in Shenzhen Bay was mainly influenced by input of terrestrial pollutants from the estuary. Correlation analysis demonstrated that air temperature (Temp) and average air pressure (AAP) exhibited the closest relationship with Chla. DO showed the strongest negative correlation with Temp, while turbidity was not sensitive to Temp, average wind speed (AWS), and AAP. Overall, the ensemble ML model proposed in this study provides an accurate and practical method for long-term Chla, turbidity, and DO estimation in coastal waters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guanyu108发布了新的文献求助10
1秒前
1秒前
Hoshino完成签到,获得积分10
3秒前
羽羽完成签到 ,获得积分10
3秒前
可爱的函函应助sisibiqi采纳,获得10
4秒前
ll应助LIIIIIII采纳,获得10
5秒前
大力沛萍发布了新的文献求助10
6秒前
7秒前
10秒前
可爱的函函应助SYJ采纳,获得10
10秒前
lvxinyan完成签到,获得积分10
10秒前
乐乐应助你好好好好采纳,获得10
13秒前
13秒前
传奇3应助AJoe采纳,获得10
13秒前
15秒前
15秒前
Yucorn完成签到 ,获得积分10
16秒前
mymEN完成签到 ,获得积分10
17秒前
sisibiqi发布了新的文献求助10
17秒前
坐下喝茶完成签到 ,获得积分10
18秒前
酷炫的幻丝完成签到 ,获得积分10
19秒前
传奇3应助累啊采纳,获得10
19秒前
yqb发布了新的文献求助10
20秒前
lpp_完成签到 ,获得积分10
21秒前
火星上的夜梦完成签到 ,获得积分10
22秒前
哇呀呀完成签到 ,获得积分10
24秒前
24秒前
30秒前
NgiNgu完成签到 ,获得积分10
30秒前
sum发布了新的文献求助10
31秒前
Dr_zsc发布了新的文献求助10
34秒前
贰鸟应助小城故事和冰雨采纳,获得10
34秒前
小马甲应助辽沈最美女博采纳,获得10
36秒前
彩色靖儿完成签到 ,获得积分10
37秒前
sum完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
贰鸟应助小城故事和冰雨采纳,获得10
43秒前
唱唱哟完成签到 ,获得积分10
43秒前
yu完成签到 ,获得积分10
44秒前
苹果书文完成签到 ,获得积分10
45秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885647
求助须知:如何正确求助?哪些是违规求助? 3427767
关于积分的说明 10756626
捐赠科研通 3152671
什么是DOI,文献DOI怎么找? 1740489
邀请新用户注册赠送积分活动 840252
科研通“疑难数据库(出版商)”最低求助积分说明 785254