Exploring transfer learning for gastrointestinal bleeding detection on small-size imbalanced endoscopy images

学习迁移 计算机科学 人工智能 卷积神经网络 特征(语言学) 模式识别(心理学) 深度学习 图像(数学) 特征学习 机器学习 上下文图像分类 语言学 哲学
作者
Xiuli Li,Hao Zhang,Xiaolu Zhang,Hao Liu,Guotong Xie
标识
DOI:10.1109/embc.2017.8037242
摘要

The success of Convolutional Neural Network (CNN) is attributed to their ability to learn rich midlevel image representations as opposed to hand-crafted low-level features used in many natural image classification methods. Learning CNN, however, amounts to estimating millions of parameters and requires a very large number of annotated image samples. In this paper, we explored transfer learning for gastrointestinal bleeding detection on small-size imbalanced endoscopy images, and showed how image representations learned with CNN on large-scale annotated datasets can be efficiently transferred to other tasks with limited amount of training data. We first transferred pre-trained Inception V3 model trained on the ImageNet dataset to compute mid-level image representation, and then fine-tuned the trained model with labeled endoscopy images, and resumed training from already learned weights. Additionally, we introduce both data augmentation and image resampling to increase the size of the training database and the positive sample rate to perform the Transfer Learning. Our results showed that our transfer learning method produces the best performance on AUC (the area under the receiver operating curve), Precision, Recall and Accuracy as compared to both the hand-crafted feature based method and training CNN model from-scratch method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
00111100应助xudanhong采纳,获得10
5秒前
7秒前
冰勾板勾完成签到,获得积分10
7秒前
欧皇发布了新的文献求助10
10秒前
CipherSage应助shallymorri采纳,获得10
11秒前
11秒前
16秒前
16秒前
稳重飞飞完成签到,获得积分10
16秒前
英吉利25发布了新的文献求助10
16秒前
6666666666完成签到 ,获得积分10
17秒前
l璐w璐l发布了新的文献求助10
20秒前
心信鑫完成签到 ,获得积分10
20秒前
20秒前
欢呼的棒棒糖完成签到,获得积分10
21秒前
22秒前
丘比特应助Migrol采纳,获得10
22秒前
23秒前
Ava应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
Owen应助科研通管家采纳,获得10
23秒前
风趣心情应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
23秒前
Ava应助科研通管家采纳,获得10
23秒前
Bio应助科研通管家采纳,获得30
23秒前
风趣心情应助科研通管家采纳,获得10
23秒前
Bio应助科研通管家采纳,获得30
24秒前
Bio应助科研通管家采纳,获得30
24秒前
烟花应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
炳楷应助科研通管家采纳,获得200
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4768036
求助须知:如何正确求助?哪些是违规求助? 4104845
关于积分的说明 12697932
捐赠科研通 3822778
什么是DOI,文献DOI怎么找? 2109774
邀请新用户注册赠送积分活动 1134279
关于科研通互助平台的介绍 1015340