计算机科学
机器人
反向动力学
运动规划
上下界
运动学
笛卡尔坐标系
算法
数学优化
人工智能
数学
物理
几何学
经典力学
数学分析
作者
Byungchul An,Jinkyu Kim,Frank C. Park
出处
期刊:IEEE robotics and automation letters
日期:2017-08-28
卷期号:3 (1): 312-319
被引量:29
标识
DOI:10.1109/lra.2017.2745542
摘要
Motion planning algorithms that rely upon the randomly exploring random tree (RRT) typically require the user to choose an appropriate stepsize; this is generally a highly problem-dependent and time-consuming process requiring trial and error. We propose an adaptive stepsize RRT path planning algorithm for open-chain robots in which only a minimum obstacle size parameter is required as input. Exploiting the structure of an open chain's forward kinematics as well as a standard inequality bound on the operator-induced matrix norm, we derive a maximum Cartesian displacement bound between two configurations of the same robot, and use this bound to determine a maximum allowable stepsize at each iteration. Numerical experiments involving a ten-DOF planar open chain and a seven-axis industrial robot arm demonstrate the practical advantages of our algorithm over standard fixed-stepsize RRT planning algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI